Article

Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size.

Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan.
Colloids and surfaces B: Biointerfaces (Impact Factor: 4.28). 11/2008; 66(2):274-80. DOI: 10.1016/j.colsurfb.2008.07.004
Source: PubMed

ABSTRACT Purpose of the present research work was to evaluate the biological distribution of differently size gold nanoparticles (NP) up on intravenous administration in mice. Another objective was to study effect of particle size on biological distribution of gold NP to enable their diverse applications in nanotechnology. Gold NP of different particle sizes, mainly 15, 50, 100 and 200 nm, were synthesized by modifying citrate ion concentration. Synthesized gold nanoparticles were characterized by SEM and their size distribution was studied by particle size analyzer. Gold NP was suspended in sodium alginate solution (0.5%, w/v) and administered to mice (1g/kg, intravenously) [n=3]. After 24h of administration of gold NP, blood was collected under light ether anesthesia, mice were sacrificed by cervical dislocation and various tissues/organs were removed. The tissues were then washed with saline, homogenized and lysed with aqua regia. The determination of gold in samples was carried out quantitatively by inductively coupled plasma mass spectrometry (ICP-MS). SEM study revealed spherical morphology of gold NP with narrow particle size distribution. Biodistribution study revealed gold NPs of all sizes were mainly accumulated in organs like liver, lung and spleen. The accumulation of gold NP in various tissues was found to be depending on particle size. 15 nm gold NP revealed higher amount of gold and number of particles in all the tissues including blood, liver, lung, spleen, kidney, brain, heart, stomach. Interestingly, 15 and 50 nm gold NP were able to pass blood-brain barrier as evident from gold concentration in brain. Two-hundred nanometers gold NP showed very minute presence in organs including blood, brain, stomach and pancreas. The results revealed that tissue distribution of gold nanoparticles is size-dependent with the smallest 15 nm nanoparticles showing the most widespread organ distribution.

3 Bookmarks
 · 
436 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles have potential applications in diagnostics, imaging, gene and drug delivery and other types of therapy. Iron oxide nanoparticles, gold nanoparticles and quantum dots have all generated substantial interest and their properties and applications have been thoroughly studied. Yet, metal-containing particles raise biodistribution and toxicity concerns because they can be quickly cleared from the blood by the reticuloendothelial system and can remain in organs, such as the liver and spleen, for prolonged periods of time. Design considerations, such as size, shape, surface coating and dosing, can be manipulated to prolong blood circulation and enhance treatment efficacy, but nonspecific distribution has thus far been unavoidable. Renal excretion of nanoparticles is possible and is size dependent, but the need to incorporate coatings to particles for increased circulation can hinder such excretion. Further long-term studies are needed because recent work has shown varying degrees of in vivo toxicity as well as varying levels of nanoparticle excretion over time. The interaction of these particles with immune cells and their effect on the innate and adaptive immune response also needs further characterization. Finally, more systematic in vitro approaches are needed to both guide in vivo work and better correlate nanoparticle properties to their biological effects.
    Nanomedicine 07/2011; 6(5):815-35. · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoparticles provide an attractive and applicable scaffold for delivery of nucleic acids. In this review, we focus on the use of covalent and noncovalent gold nanoparticle conjugates for applications in gene delivery and interfering RNA technologies. We also discuss challenges in nucleic acid delivery, including endosomal entrapment/escape and active delivery/presentation of nucleic acids in the cell.Molecular Therapy (2014); doi:10.1038/mt.2014.30.
    Molecular Therapy 03/2014; · 7.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Engineered nanoparticles (ENP), which could be composed of inorganic metals, metal oxides, metalloids, organic biodegradable and inorganic biocompatible polymers, are being used as carriers for vaccine and drug delivery. There is also increasing interest in their application as delivery agents for the treatment of a variety of lung diseases. Although many studies have shown ENP can be effectively and safely used to enhance the delivery of drugs and vaccines in the periphery, there is concern that some ENP could promote inflammation, with unknown consequences for lung immune homeostasis. In this study, we review research on the effects of ENP on lung immunity, focusing on recent studies using diverse animal models of human lung disease. We summarize how the inflammatory and immune response to ENP is influenced by the diverse biophysical and chemical characteristics of the particles including composition, size and mode of delivery. We further discuss newly described unexpected beneficial properties of ENP administered into the lung, where biocompatible polystyrene or silver nanoparticles can by themselves decrease susceptibility to allergic airways inflammation. Increasing our understanding of the differential effects of diverse types of nanoparticles on pulmonary immune homeostasis, particularly previously underappreciated beneficial outcomes, supports rational ENP translation into novel therapeutics for prevention and/or treatment of inflammatory lung disorders.
    Drug Metabolism Reviews 11/2013; · 5.54 Impact Factor

Full-text (2 Sources)

View
574 Downloads
Available from
May 15, 2014