Article

Neural circuits for triggering saccades in the brainstem.

Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
Progress in brain research (Impact Factor: 4.19). 02/2008; 171:79-85. DOI: 10.1016/S0079-6123(08)00611-0
Source: PubMed

ABSTRACT Here we review the functional anatomy of brainstem circuits important for triggering saccades. Whereas the rostral part of the superior colliculus (SC) is considered to be involved in visual fixation, the caudal part of the SC plays an important role in generation of saccades. We determined the neural connections from the rostral and caudal parts of the SC to inhibitory burst neurons (IBNs) and omnipause neurons (OPNs) in the nucleus raphe interpositus. To reveal the neural mechanisms of triggering saccadic eye movements, we analysed the effects of stimulation of the SC on intracellular potentials recorded from IBNs and OPNs in anaesthetized cats. Our studies show that IBNs receive monosynaptic excitation from the contralateral caudal SC, and disynaptic inhibition from the ipsilateral caudal SC, via contralateral IBNs. Further, IBNs receive disynaptic inhibition from the rostral part of the SC, on either side, via OPNs. Intracellular recording revealed that OPNs receive excitation from the rostral parts of the bilateral SCs, and disynaptic inhibition from the caudal SC mainly via IBNs. The neural connections determined in this study are consistent with the notion that the "fixation zone" is localized in the rostral SC, and suggest that IBNs, which receive monosynaptic excitation from the caudal "saccade zone," may inhibit tonic activity of OPNs and thereby trigger saccades.

0 Bookmarks
 · 
58 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oculomotor system is the motor system of choice for many neuroscientists studying motor control and learning because of its simplicity, easy control of inputs (e.g., visual stimulation), and precise control and measurement of motor outputs (eye position). This is especially true in primates, which are easily trained to perform oculomotor tasks. Here we provide the first detailed characterization of the oculomotor performance of trained squirrel monkeys, primates used extensively in oculomotor physiology, during saccade and smooth pursuit tasks, and compare it to that of the rhesus macaque. We found that both primates have similar oculomotor behavior but the rhesus shows a larger oculomotor range, better performance for horizontal saccades above 10 degrees, and better horizontal smooth pursuit gain to target velocities above 15 deg/s. These results are important for interspecies comparisons and necessary when selecting the best stimuli to study motor control and motor learning in the oculomotor systems of these primates.
    Experimental Brain Research 06/2011; 212(3):409-16. · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The saccade trigger signal was proposed by D.A. Robinson, but neural substrates for triggering saccades by inhibiting omnipause neuron (OPN) activity still remain controversial. We investigated tectal inputs to OPNs by recording intracellular potentials from OPNs and inhibitory burst neurons (IBNs) and searched for interneurons to inhibit OPNs in the brainstem of anesthetized cats. IBNs received monosynaptic excitation from the contralateral caudal superior colliculus (SC) and disynaptic inhibition via contralateral IBNs from the ipsilateral caudal SC, whereas IBNs received disynaptic inhibition from the rostral SC. The latter disynaptic inhibition was mediated by OPNs, since OPNs received monosynaptic excitation from the rostral SC and projected to IBNs. In contrast, OPNs received disynaptic inhibition from the caudal SC. This disynaptic inhibition from the caudal SC was mediated to OPNs by IBNs. These findings suggested possible roles of IBNs for triggering and maintaining saccades by actively inhibiting the tonic activity of OPNs.
    Annals of the New York Academy of Sciences 09/2011; 1233:100-6. · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intelligent agents balance speed of responding with accuracy of deciding. Stochastic accumulator models commonly explain this speed-accuracy tradeoff by strategic adjustment of response threshold. Several laboratories identify specific neurons in prefrontal and parietal cortex with this accumulation process, yet no neurophysiological correlates of speed-accuracy tradeoff have been described. We trained macaque monkeys to trade speed for accuracy on cue during visual search and recorded the activity of neurons in the frontal eye field. Unpredicted by any model, we discovered that speed-accuracy tradeoff is accomplished through several distinct adjustments. Visually responsive neurons modulated baseline firing rate, sensory gain, and the duration of perceptual processing. Movement neurons triggered responses with activity modulated in a direction opposite of model predictions. Thus, current stochastic accumulator models provide an incomplete description of the neural processes accomplishing speed-accuracy tradeoffs. The diversity of neural mechanisms was reconciled with the accumulator framework through an integrated accumulator model constrained by requirements of the motor system.
    Neuron 11/2012; 76(3):616-28. · 15.77 Impact Factor