Article

Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in alpha-mannosidosis mice.

Biochemical Institute, University of Kiel, Kiel, Germany.
Human Molecular Genetics (Impact Factor: 6.68). 09/2008; 17(22):3437-45. DOI: 10.1093/hmg/ddn237
Source: PubMed

ABSTRACT Despite the progress in the treatment of lysosomal storage disorders (LSDs) mainly by enzyme replacement therapy, only limited success was reported in targeting the appropriate lysosomal enzyme into the brain. This prevents efficient clearance of neuronal storage, which is present in many of these disorders including alpha-mannosidosis. Here we show that the neuropathology of a mouse model for alpha-mannosidosis can be efficiently treated using recombinant human alpha-mannosidase (rhLAMAN). After intravenous administration of different doses (25-500 U/kg), rhLAMAN was widely distributed among tissues, and immunohistochemistry revealed lysosomal delivery of the injected enzyme. Whereas low doses (25 U/kg) led to a significant clearance (<70%) in visceral tissues, higher doses were needed for a clear effect in central and peripheral nervous tissues. A distinct reduction (<50%) of brain storage required repeated high-dose injections (500 U/kg), whereas lower doses (250 U/kg) were sufficient for clearance of stored substrates in peripheral neurons of the trigeminal ganglion. Successful transfer across the blood-brain barrier was evident as the injected enzyme was found in hippocampal neurons, leading to a nearly complete disappearance of storage vacuoles. Importantly, the decrease in neuronal storage in the brain correlated with an improvement of the neuromotor disabilities found in untreated alpha-mannosidosis mice. Uptake of rhLAMAN seems to be independent of mannose-6-phosphate receptors, which is consistent with the low phosphorylation profile of the enzyme. These data suggest that high-dose injections of low phosphorylated enzymes might be an interesting option to efficiently treat LSDs with CNS involvement.

1 Follower
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The success of the first enzyme replacement therapy (ERT) for a lysosomal storage disease (LSD) and the regulatory and commercial incentives provided by authorities for orphan and rare diseases has spawned a massive interest for developing drugs for these intriguing but devastating genetic disorders. The potential for new drugs in this arena is vast, as not only a high number of LSDs have no available therapy, but also alternative therapeutic approaches for diseases with existing treatment are much needed as a number of challenges facing the existing therapies have become very obvious. A significant unmet medical need is therefore apparent for most, if not all of the LSDs and the development of new therapies based on the increasing knowledge of the pathophysiological mechanisms involved in these devastating diseases is therefore anticipated with great interest from all stakeholders. Areas covered: The reader will be introduced to the intricate biological processes involved in lysosomal regulation and how these are exploited for current and emerging therapies. Therapies utilizing these processes will be thoroughly reviewed with regard to their mechanism of action, their clinical status and the challenges they are faced with and/or are aiming to address. For this review, a literature research has been undertaken that covers the years 1955 – 2012. Expert opinion: The interest in lysosomal biology and disease has surged over the past decade not only in the halls of science but also of pharmaceutical companies. As the complexity of the LSDs increasingly become revealed, so do novel therapeutic targets continuously nurturing the development of new candidate drugs for these devastating diseases. Among this multitude of approaches, the ERTs still account for the vast majority of approved therapies but a number of exciting alternative approaches are emerging targeting various components of the pathophysiological cascade. This evolution of the field is much needed as the presently available treatments are unable to address all clinical aspects of these multifaceted diseases. Future therapy will most likely consist of combinations of these established and emerging approaches as well as other yet to be discovered concepts as the complexity of the diseases demands a certain degree of humbleness to the expectations for a cure based on a single therapy.
    04/2013; 1(5). DOI:10.1517/21678707.2013.780970
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington’s and Parkinson’s disease. To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions. Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0182-y) contains supplementary material, which is available to authorized users.
    01/2015; 3(1):6. DOI:10.1186/s40478-014-0182-y
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations within the lysosomal enzyme β-glucocerebrosidase (GC) result in Gaucher disease and represent a major risk factor for developing Parkinson disease (PD). Loss of GC activity leads to accumulation of its substrate glucosylceramide and α-synuclein. Since lysosomal activity of GC is tightly linked to expression of its trafficking receptor, the lysosomal integral membrane protein type-2 (LIMP-2), we studied α-synuclein metabolism in LIMP-2-deficient mice. These mice showed an α-synuclein dosage-dependent phenotype, including severe neurological impairments and premature death. In LIMP-2-deficient brains a significant reduction in GC activity led to lipid storage, disturbed autophagic/lysosomal function, and α-synuclein accumulation mediating neurotoxicity of dopaminergic (DA) neurons, apoptotic cell death, and inflammation. Heterologous expression of LIMP-2 accelerated clearance of overexpressed α-synuclein, possibly through increasing lysosomal GC activity. In surviving DA neurons of human PD midbrain, LIMP-2 levels were increased, probably to compensate for lysosomal GC deficiency. Therefore, we suggest that manipulating LIMP-2 expression to increase lysosomal GC activity is a promising strategy for the treatment of synucleinopathies.
    Proceedings of the National Academy of Sciences 10/2014; 111(43). DOI:10.1073/pnas.1405700111 · 9.81 Impact Factor

Full-text (2 Sources)

Download
45 Downloads
Available from
May 27, 2014