Article

Lopinavir impairs protein synthesis and induces eEF2 phosphorylation via the activation of AMP-activated protein kinase

Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, USA.
Journal of Cellular Biochemistry (Impact Factor: 3.37). 10/2008; 105(3):814-23. DOI: 10.1002/jcb.21882
Source: PubMed

ABSTRACT HIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery. Treatment of C2C12 myocytes with LPV produced a dose-dependent inhibitory effect on protein synthesis. This effect was observed at 15 min and was maintained for at least 4 h. Mechanistically, LPV increased the phosphorylation of eEF2 and thereby decreased the activity of this protein. Increased phosphorylation of eEF2 was associated with increased activity of its upstream regulators AMP-activated protein kinase (AMPK) and eEF2 kinase (eEF2K). Both AMPK and eEF2K directly phosphorylated eEF2 in an in vitro kinase assay suggesting two distinct paths lead to eEF2 phosphorylation. To verify this connection, myocytes were treated with the AMPK inhibitor compound C. Compound C blocked eEF2K and eEF2 phosphorylation, demonstrating that LPV affects eEF2 activity via an AMPK-eEF2K dependent pathway. In contrast, incubation of myocytes with rottlerin suppressed eEF2K, but not eEF2 phosphorylation, suggesting that eEF2 can be regulated independent of eEF2K. Finally, LPV did not affect PP2A activity when either eEF2 or peptide was used as the substrate. Collectively, these results indicate that LPV decreases protein synthesis, at least in part, via inhibition of eEF2. This appears regulated by AMPK which can act directly on eEF2 or indirectly via the action of eEF2K.

Download full-text

Full-text

Available from: Charles Lang, Feb 03, 2014
0 Followers
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mTORC1 protein kinase complex consists of mTOR, raptor, mLST8/GbetaL and PRAS40. Previously, we reported that mTOR plays an important role in regulating protein synthesis in response to alcohol (EtOH). However, the mechanisms by which EtOH regulates mTORC1 activity have not been established. Here, we investigated the effect of EtOH on the phosphorylation and interaction of components of mTORC1 in C2C12 myocytes. We also examined the specific role that PRAS40 plays in this process. Incubation of myocytes with EtOH (100 mM, 24 h) increased raptor and PRAS40 phosphorylation. Likewise, there were increased levels of the PRAS40 upstream regulators Akt and IRS-1. EtOH also caused changes in mTORC1 protein-protein interactions. EtOH enhanced the binding of raptor and PRAS40 with mTOR. These alterations occurred in concert with increased binding of 14-3-3 to raptor, while the PRAS40 and 14-3-3 interaction was not affected. The shRNA knockdown (KD) of PRAS40 decreased protein synthesis similarly to EtOH. PRAS40 KD increased raptor phosphorylation and its association with 14-3-3, whereas decreased GbetaL-mTOR binding. The effects of EtOH and PRAS40 KD were mediated by AMPK. Both factors increased in vitro AMPK activity towards the substrate raptor. In addition, KD enhanced the activity of AMPK towards TSC2. Collectively, our results indicate that EtOH stabilizes the association of raptor, PRAS40, and GbetaL with mTOR, while likewise increasing the interaction of raptor with 14-3-3. These data suggest a possible mechanism for the inhibitory effects of EtOH on mTOR kinase activity and protein synthesis in myocytes.
    Journal of Cellular Biochemistry 04/2010; 109(6):1172-84. DOI:10.1002/jcb.22496 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic elongation factor-2 kinase (eEF2K) relays growth and stress signals to protein synthesis through phosphorylation and inactivation of eukaryotic elongation factor 2 (eEF2). 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) is a widely accepted inhibitor of mammalian eEF2K and an efficacious anti-proliferation agent against different cancer cells. It implied that eEF2K could be an efficacious anticancer target. However, eEF2K siRNA was ineffective against cancer cells including those sensitive to NH125. To test if pharmacological intervention differs from siRNA interference, we identified a highly selective small molecule eEF2K inhibitor A-484954. Like siRNA, A-484954 had little effect on cancer cell growth. We carefully examined the effect of NH125 and A-484954 on phosphorylation of eEF2, the known cellular substrate of eEF2K. Surprisingly, NH125 increased eEF2 phosphorylation, whereas A-484954 inhibited the phosphorylation as expected for an eEF2K inhibitor. Both A-484954 and eEF2K siRNA inhibited eEF2K and reduced eEF2 phosphorylation with little effect on cancer cell growth. These data demonstrated clearly that the anticancer activity of NH125 was more correlated with induction of eEF2 phosphorylation than inhibition of eEF2K. Actually, induction of eEF2 phosphorylation was reported to correlate with inhibition of cancer cell growth. We compared several known inducers of eEF2 phosphorylation including AMPK activators and an mTOR inhibitor. Interestingly, stronger induction of eEF2 phosphorylation correlated with more effective growth inhibition. We also explored signal transduction pathways leading to NH125-induced eEF2 phosphorylation. Preliminary data suggested that NH125-induced eEF2 phosphorylation was likely mediated through multiple pathways. These observations identified an opportunity for a new multipathway approach to anticancer therapies.
    Journal of Biological Chemistry 12/2011; 286(51):43951-8. DOI:10.1074/jbc.M111.301291 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent epidemiological studies have demonstrated that metformin lowers the risk of several types of cancer in diabetic patients. Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the vascular basement membrane extracellular matrix proteins, thereby promoting endothelial cell invasion, migration and angiogenesis in the incidence and progression of tumors. The aim of this study was to investigate the effects of metformin on human umbilical vein endothelial cell (HUVEC) proliferation and migration, as well as on MMP-2 and MMP-9 expression. Cell proliferation was determined by cell counting and MTT colorimetric assays. Cell migration was assessed by the wound repair method. Quantitative real-time reverse transcription PCR was performed to quantify the mRNA expression of MMPs. Metformin at concentrations of 0.5-3.0 mM effectively reduced the number of endothelial cells by 5.5-55%, without being cytotoxic to the cells. Similarly, cell proliferation and migration were markedly inhibited by metformin. In addition, treatment with metformin demonstrated a strong (P<0.001) suppressive effect on the mRNA levels of MMP-2 and -9 in the endothelial cells. The inhibitory effects of metformin on endothelial cell number, migration, and MMP expression were reversed partially by compound C, which is an inhibitor of AMP-activated protein kinase (AMPK). The present study reports that metformin considerably inhibited the proliferation, migration, and MMP-2 and -9 expression of HUVECs, and the effect was partially AMPK-dependent. The obtained findings provide a molecular rationale, whereby metformin can exert anticancer effects.
    Molecular Medicine Reports 04/2012; 5(4):1068-74. DOI:10.3892/mmr.2012.753 · 1.48 Impact Factor
Show more