Article

Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans

Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
International Journal of Cancer (Impact Factor: 5.01). 11/2008; 123(9):2095-104. DOI: 10.1002/ijc.23801
Source: PubMed

ABSTRACT Few studies on the association between nucleotide excision repair (NER) variants and lung cancer risk have included Latinos and African Americans. We examine variants in 6 NER genes (ERCC2, ERCC4, ERCC5, LIG1, RAD23B and XPC) in association with primary lung cancer risk among 113 Latino and 255 African American subjects newly diagnosed with primary lung cancer from 1998 to 2003 in the San Francisco Bay Area and 579 healthy controls (299 Latinos and 280 African Americans). Individual single nucleotide polymorphism and haplotype analyses, multifactor dimensionality reduction (MDR) and principal components analysis (PCA) were performed to assess the association between 6 genes in the NER pathway and lung cancer risk. Among Latinos, ERCC2 haplotype CGA (rs238406, rs11878644, rs6966) was associated with reduced lung cancer risk [odds ratio (OR) of 0.65 and 95% confidence interval (CI): 0.44-0.97], especially among nonsmokers (OR = 0.29; 95% CI: 0.12-0.67). From MDR analysis, in Latinos, smoking and 3 SNPs (ERCC2 rs171140, ERCC5 rs17655 and LIG1 rs20581) together had a prediction accuracy of 67.4% (p = 0.001) for lung cancer. Among African Americans, His/His genotype of ERCC5 His1104Asp (rs17655) was associated with increased lung cancer risk (OR = 1.78; 95% CI: 1.09-2.91), and LIG1 haplotype GGGAA (rs20581, rs156641, rs3730931, rs20579 and rs439132) was associated with reduced lung cancer risk (OR = 0.61; 95% CI: 0.42-0.88). Our study suggests different elements of the NER pathway may be important in the different ethnic groups resulting either from different linkage relationship, genetic backgrounds and/or exposure histories.

Download full-text

Full-text

Available from: Melinda C Aldrich, Jun 23, 2015
0 Followers
 · 
167 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA repair genes play an important role in maintaining stability and integrity of genomic DNA. Polymorphisms in nucleotide excision repair genes may cause variations in DNA repair capacity phenotype and thus contribute to cancer risk. In this case-control study of 1,125 gastric cancer cases and 1,196 cancer-free controls, we investigated the association between three functional single nucleotide polymorphisms (SNPs, rs2296147T > C, rs2094258C > T and rs873601G > A) in the xeroderma pigmentosum group G (XPG) gene and gastric cancer risk. We used the Taqman assays to genotype these three SNPs and logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). We found that only the rs873601A variant genotypes were associated with a significant higher risk for gastric adenocarcinoma (adjusted OR = 1.30, 95% CI = 1.03-1.64 for AA vs. GG and adjusted OR = 1.23, 95% CI = 1.01-1.49 for AA vs. GG/AG). Stratification analysis indicated that this risk was more pronounced in subgroups of older age (>59 years), males, ever-smokers, and patients with NGCA. All these were not found for the other two SNPs (rs2296147T > C and rs2094258C > T). We then performed expression analysis using gastric cancer adjacent normal tissues from 141 patients and found that the A variant allele was associated with non-significantly reduced expression of XPG mRNA (P(trend) = 0.107). Further analysis using mRNA expression data from the HapMap suggested that the A allele was associated with significantly reduced expression of XPG mRNA in normal cell lines for 45 Chinese (P(trend) = 0.003) as well as for 261 subjects with different ethnicities (P(trend) = 0.001). These support the hypothesis that functional XPG variants may contribute to the risk of gastric cancer. Larger studies with different ethnic populations are warranted to validate our findings.
    Human Genetics 02/2012; 131(7):1235-44. DOI:10.1007/s00439-012-1152-8 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since nucleotide excision repair (NER) is primarily responsible for detecting and removing bulky DNA lesions induced by tobacco smoke in the respiratory tract, single nucleotide polymorphisms (SNPs) in NER protein-encoding genes may influence lung cancer risk, particularly in smokers. Studies testing this hypothesis have produced inconsistent results, with most analyzing a few SNPs in relatively small population samples. In a study nested in the Beta- Carotene and Retinol Efficacy Trial, we examined 79 tag and previously reported risk-associated SNPs in the ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, LIG1, POLE, XPA, and XPC genes in 744 lung cancer cases and 1,477 controls, all of whom were non-Hispanic white smokers. Using logistic regression, odds ratios (OR) and 95% confidence intervals (95% CI) were calculated to estimate lung cancer risk associated with SNP genotypes and haplotypes, adjusting for case-control matching factors. Lung cancer risk was modestly associated with LIG1 rs156640 (OR per G allele, 1.23; 95% CI, 1.08-1.40), rs156641 (OR per A allele, 1.23; 95% CI, 1.08-1.40), and rs8100261 (OR per A allele, 0.83; 95% CI, 0.76-0.98); XPA rs3176658 (OR per A allele, 0.83; 95% CI, 0.69-1.00); and ERCC2 rs50871 (OR per C allele, 1.15; 95% CI: 1.01-1.30). Associations with LIG1 and XPA, but not ERCC2, haplotypes were found. The results of this study and others suggest that inherited variants in LIG1 and possibly other NER genes may predispose to smoking-related lung cancer. Given that chance likely accounts for one or more of the associations observed, replication of our findings is needed.
    International Journal of Molecular Epidemiology and Genetics 01/2012; 3(1):1-17. DOI:10.1158/1538-7445.AM2011-886
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A computational approach for identifying functionally relevant SNPs in gene LIG1 has been proposed. LIG1 is a crucial gene which is involved in excision repair pathways and mutations in this gene may lead to increase sensitivity towards DNA damaging agents. A total of 792 SNPs were reported to be associated with gene LIG1 in dbSNP. Different web server namely SIFT, PolyPhen, CUPSAT, FASTSNP, MAPPER and dbSMR were used to identify potentially functional SNPs in gene LIG1. SIFT, PolyPhen and CUPSAT servers predicted eleven nsSNPs to be intolerant, thirteen nsSNP to be damaging and two nsSNPs have the potential to destabilize protein structure. The nsSNP rs11666150 was predicted to be damaging by all three servers and its mutant structure showed significant increase in overall energy. FASTSNP predicted twenty SNPs to be present in splicing modifier binding sites while rSNP module from MAPPER server predicted nine SNPs to influence the binding of transcription factors. The results from the study may provide vital clues in establishing affect of polymorphism on phenotype and in elucidating drug response.
    07/2011; 1(1):47-56. DOI:10.1007/s13205-011-0006-8