Poisonous plants of veterinary and human importance in southern Africa.

Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
Journal of Ethnopharmacology (Impact Factor: 2.76). 08/2008; 119(3):549-58. DOI:10.1016/j.jep.2008.07.022
Source: PubMed

ABSTRACT Southern Africa is inherently rich in flora, where the habitat and climatic conditions range from arid environments to lush, sub-tropical greenery. Needless to say, with such diversity in plant life there are numerous indigenous poisonous plants, and when naturalised exotic species and toxic garden varieties are added the list of potential poisonous plants increases. The economically important poisonous plants affecting livestock and other plant poisonings of veterinary significance are briefly reviewed. In addition, a synopsis of the more common plant poisonings in humans is presented. Many of the plants mentioned in this review are also used ethnobotanically for treatment of disease in humans and animals and it is essential to be mindful of their toxic potential.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Gousiekte, a cardiac syndrome of ruminants in southern Africa, is caused by the ingestion of plants containing the polyamine pavettamine. All the six known gousiekte-causing plants are members of the Rubiaceae or coffee family and house endosymbiotic Burkholderia bacteria in their leaves. It was therefore hypothesized that these bacteria could be involved in the production of the toxin. The pavettamine level in the leaves of 82 taxa from 14 genera was determined. Included in the analyses were various nodulated and non-nodulated members of the Rubiaceae. This led to the discovery of other pavettamine producing Rubiaceae, namely Psychotria kirkii and Psychotria viridiflora. Our analysis showed that many plant species containing bacterial nodules in their leaves do not produce pavettamine. It is consequently unlikely that the endosymbiont alone can be accredited for the synthesis of the toxin. Until now the inconsistent toxicity of the gousiekte-causing plants have hindered studies that aimed at a better understanding of the disease. In vitro dedifferentiated plant cell cultures are a useful tool for the study of molecular processes. Plant callus cultures were obtained from pavettamine-positive species. Mass spectrometric analysis shows that these calli do not produce pavettamine but can produce common plant polyamines.
    Plant Physiology and Biochemistry 03/2013; 67C:15-19. · 2.78 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Although medicinal plants are used extensively to treat sexually transmitted infections (STIs) in rural northern Maputaland, KwaZulu-Natal, the efficacy and safety of these plants have not previously been evaluated. A study was designed to investigate the in vitro antimicrobial activity and cytotoxicity profiles of a selection (individual plants and selected combinations), of traditionally used plants in this study area. Aqueous and organic (dichloromethane: methanol, 1:1) extracts were prepared. Antimicrobial activity was assessed using the minimum inhibitory concentration (MIC) assay against the STI associated pathogens; Candida albicans ATCC 10231, Ureaplasma urealyticum clinical strain, Oligella ureolytica ATCC 43534, Trichomonas vaginalis clinical strain, Gardnerella vaginalis ATCC 14018 and Neisseria gonorrhoeae ATCC 19424. For the combination study, interactions were assessed using the fractional inhibitory concentration (ΣFIC). The plant species were assessed for safety using the 3-[4,5-dimethyl-2-thiazol-yl]-2,5-diphenyl-2H-tetrazolium bromide (MTT) cellular viability assay on the human embryonic kidney epithelial (Graham, HEK-293) cell line. For the antimicrobial studies, U. urealyticum was the most sensitive of the six test organisms, with the aqueous extract of Ranunculus multifidus (0.02mg/ml) and the organic extract of Peltophorum africanum (0.04mg/ml) being the most antimicrobially active plant species studied. Sclerocarya birrea was found to have the broadest spectrum of activity (mean MIC of 0.89mg/ml). The only plant species to exhibit some degree of cytotoxicity against the kidney epithelial cell line was Kigelia africana (100µg/ml), with 22% and 16% cell death for the aqueous and organic extracts, respectively. Of the 13 combinations studied, several synergistic combinations were evident, the most prominent being the combination of Albizia adianthifolia and Trichilia dregeana (aqueous extract) a ΣFIC of 0.15 against O. ureolytica. Synergistic interactions were observed regardless of the ratio of the aqueous mixtures of the two plants. Syzygium cordatum and S. birrea (aqueous extract) was also a combination of interest, demonstrating synergistic (ΣFIC=0.42) interactions against O. ureolytica. This combination, however, also displayed some cytotoxicity towards the human epithelial cell line. This study demonstrated that anecdotal evidence of plant use does not always correlate with in vitro activity. Furthermore, the toxicological profiling is of utmost importance as if not combined in its correct ratio can lead to potential adverse effects.
    Journal of ethnopharmacology 07/2013; · 2.32 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The jequirity bean (Abrus precatorius) is well known because of its shiny black and red coloured seeds and because of the poison (abrin) it contains. The genus Abrus is placed in a monogeneric tribe Abreae which is placed in a relatively isolated systematic position at the base of Millettieae. To contribute to a better understanding of this taxon, a detailed ontogenetic and morphologic analysis of its flowers is presented. Floral primordia are subtended by an abaxial bract and preceded by two lateral bracteoles which are formed in short succession. Sepal formation is unidirectional starting abaxially. All petals are formed simultaneously. The carpel is formed concomitantly with the outer (antesepalous) stamen whorl, which arises unidirectionally, starting in an abaxial position. In the inner, antepetalous stamen whorl two abaxial stamens are formed first, followed by two lateral stamen primordia. The adaxial, antepetalous position remains organ free (i.e. this stamen is lost). Later in development the nine stamen filaments fuse to form an adaxially open sheath. The filament bases of the two adaxial outer-whorl stamens grow inwards, possibly to provide stability and to compensate for the lost stamen. In the mature flower a basal outgrowth can be found in the position of the lost stamen. However this is more likely to be an outgrowth of the filament sheath rather than a remnant of the lost stamen. These ontogenetic patterns match in parts those found in other Millettieae (unidirectional formation of sepals and stamens, simultaneous petal formation). In contrast, the complete loss of a stamen is rather unusual and supports the isolated position of Abreae and probably justifies (among other characters) its tribal status. A review of androecial characters shows that androecialmerosity is on the one hand extremely variable among Leguminosae, varying from a single stamen per flower to more than 500. On the other hand it is noteworthy that the number of stamens becomes stabilised in more derived Papilionoideae such as the large non-protein-amino-acid-accumulating clade (NPAAA clade). This indicates that the androecium has played an important role in the success of a major part of Leguminosae.
    South African Journal of Botany 11/2013; 89:210-218. · 1.41 Impact Factor

Full-text (2 Sources)

Available from
Dec 10, 2012