Article

Tethering of the Conserved piggyBac Transposase Fusion Protein CSB-PGBD3 to Chromosomal AP-1 Proteins Regulates Expression of Nearby Genes in Humans

Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington, United States of America.
PLoS Genetics (Impact Factor: 8.17). 09/2012; 8(9):e1002972. DOI: 10.1371/journal.pgen.1002972
Source: PubMed

ABSTRACT The CSB-PGBD3 fusion protein arose more than 43 million years ago when a 2.5-kb piggyBac 3 (PGBD3) transposon inserted into intron 5 of the Cockayne syndrome Group B (CSB) gene in the common ancestor of all higher primates. As a result, full-length CSB is now coexpressed with an abundant CSB-PGBD3 fusion protein by alternative splicing of CSB exons 1-5 to the PGBD3 transposase. An internal deletion of the piggyBac transposase ORF also gave rise to 889 dispersed, 140-bp MER85 elements that were mobilized in trans by PGBD3 transposase. The CSB-PGBD3 fusion protein binds MER85s in vitro and induces a strong interferon-like innate antiviral immune response when expressed in CSB-null UVSS1KO cells. To explore the connection between DNA binding and gene expression changes induced by CSB-PGBD3, we investigated the genome-wide DNA binding profile of the fusion protein. CSB-PGBD3 binds to 363 MER85 elements in vivo, but these sites do not correlate with gene expression changes induced by the fusion protein. Instead, CSB-PGBD3 is enriched at AP-1, TEAD1, and CTCF motifs, presumably through protein-protein interactions with the cognate transcription factors; moreover, recruitment of CSB-PGBD3 to AP-1 and TEAD1 motifs correlates with nearby genes regulated by CSB-PGBD3 expression in UVSS1KO cells and downregulated by CSB rescue of mutant CS1AN cells. Consistent with these data, the N-terminal CSB domain of the CSB-PGBD3 fusion protein interacts with the AP-1 transcription factor c-Jun and with RNA polymerase II, and a chimeric CSB-LacI construct containing only the N-terminus of CSB upregulates many of the genes induced by CSB-PGBD3. We conclude that the CSB-PGBD3 fusion protein substantially reshapes the transcriptome in CS patient CS1AN and that continued expression of the CSB-PGBD3 fusion protein in the absence of functional CSB may affect the clinical presentation of CS patients by directly altering the transcriptional program.

1 Follower
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, inter-specific and inter-generic hybridization, and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process.
    Journal of Evolutionary Biology 10/2014; Volume 27(Issue 12):pp 2573–2584. DOI:10.1111/jeb.12513 · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic engineering, which was started by the E. coli gene manipulation, has led to rapid development in all area of life sciences. Recently, genetic engineering, which is an insertion or a removal technique of a specific gene on chromosomes, has been established and is usefully available in the applied life sciences including medicine and agriculture. In this review, we briefly explain pest management focusing on Release of Insects carrying a Dominant Lethal (RIDL) that is a highly economic and environment-friendly method of biological pest control. Although at present RIDL confronts many difficulties in applying directly in fields, it will be one of the best methods for the pest management in the near future without pesticides and disturbing ecosystem by the continued development of genetic engineering. However, these powerful techniques must be considered with great care to avoid harm to ecosystem.
    07/2013; 23(7). DOI:10.5352/JLS.2013.23.7.955
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the question if CSB (Cockayne Syndrome complementation B) protein actively regulates gene transcription and how mutations in CSB gene affect that regulatory role.

Preview

Download
4 Downloads
Available from