Article

Developmental regulation of oligosialylation in zebrafish.

Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille 1, 59655, Villeneuve d'Ascq, France.
Glycoconjugate Journal (Impact Factor: 1.88). 09/2008; 26(3):247-61. DOI:10.1007/s10719-008-9161-5
Source: PubMed

ABSTRACT Zebrafish appears as a relevant model for the functional study of glycoconjugates along vertebrate's development. Indeed, as a prelude to such studies, we have previously identified a vast array of potentially stage-specific glycoconjugates, which structures are reminiscent of glycosylation pathways common to all vertebrates. In the present study, we have focused on the identification and regulation of major protein and lipids associated alpha2-8-linked oligosialic acids motifs in the early development of zebrafish. By a combination of partial hydrolysis, anion exchange HPLC-FD and mass spectrometry, we demonstrated that glycoproteins and glycolipids differed by the extent and the nature of their substituting oligosialylated sequences. Furthermore, relative quantifications showed that alpha2-8-linked sialylation was differentially regulated in both families of glycoconjugates along development. Accordingly, we established that alpha2,8-sialyltransferase mRNA levels was directly correlated with changes of alpha2,8-sialylation status of glycolipids, but independent of those observed on major glycoproteins that appear to originate from the mother.

0 0
 · 
1 Bookmark
 · 
141 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Zebrafish (Danio rerio) remains a versatile model organism for the investigation of early development and organogenesis, and has emerged as a valuable platform for drug discovery and toxicity evaluation [1-6]. Harnessing the genetic power and experimental accessibility of this system, three decades of research have identified key genes and pathways that control the development of multiple organ systems and tissues, including the heart, kidney, and craniofacial cartilage, as well as the hematopoietic, vascular, and central and peripheral nervous systems [7-31]. In addition to their application in large mutagenic screens, zebrafish has been used to model a variety of diseases such as diabetes, polycystic kidney disease, muscular dystrophy and cancer [32-36]. As this work continues to intersect with cellular pathways and processes such as lipid metabolism, glycosylation and vesicle trafficking, investigators are often faced with the challenge of determining the degree to which these pathways are functionally conserved in zebrafish. While they share a high degree of genetic homology with mouse and human, the manner in which cellular pathways are regulated in zebrafish during early development, and the differences in the organ physiology, warrant consideration before functional studies can be effectively interpreted and compared with other vertebrate systems. This point is particularly relevant for glycosylation since an understanding of the glycan diversity and the mechanisms that control glycan biosynthesis during zebrafish embryogenesis (as in many organisms) is still developing.Nonetheless, a growing number of studies in zebrafish have begun to cast light on the functional roles of specific classes of glycans during organ and tissue development. While many of the initial efforts involved characterizing identified mutants in a number of glycosylation pathways, the use of reverse genetic approaches to directly model glycosylation-related disorders is now increasingly popular. In this review, the glycomics of zebrafish and the developmental expression of their glycans will be briefly summarized along with recent chemical biology approaches to visualize certain classes of glycans within developing embryos. Work regarding the role of protein-bound glycans and glycosaminoglycans (GAG) in zebrafish development and organogenesis will also be highlighted. Lastly, future opportunities and challenges in the expanding field of zebrafish glycobiology are discussed.
    Glycoconjugate Journal 05/2012; · 1.88 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Sialic acids (Sia) form the nonreducing end of the bulk of cell surface-expressed glycoconjugates. They are, therefore, major elements in intercellular communication processes. The addition of Sia to glycoconjugates requires metabolic activation to CMP-Sia, catalyzed by CMP-Sia synthetase (CMAS). This highly conserved enzyme is located in the cell nucleus in all vertebrates investigated to date, but its nuclear function remains elusive. Here, we describe the identification and characterization of two Cmas enzymes in Danio rerio (dreCmas), one of which is exclusively localized in the cytosol. We show that the two cmas genes most likely originated from the third whole genome duplication, which occurred at the base of teleost radiation. cmas paralogues were maintained in fishes of the Otocephala clade, whereas one copy got subsequently lost in Euteleostei (e.g. rainbow trout). In zebrafish, the two genes exhibited a distinct spatial expression pattern. The products of these genes (dreCmas1 and dreCmas2) diverged not only with respect to subcellular localization but also in substrate specificity. Nuclear dreCmas1 favored N-acetylneuraminic acid, whereas the cytosolic dreCmas2 showed highest affinity for 5-deamino-neuraminic acid. The subcellular localization was confirmed for the endogenous enzymes in fractionated zebrafish lysates. Nuclear entry of dreCmas1 was mediated by a bipartite nuclear localization signal, which seemed irrelevant for other enzymatic functions. With the current demonstration that in zebrafish two subfunctionalized cmas paralogues co-exist, we introduce a novel and unique model to detail the roles that CMAS has in the nucleus and in the sialylation pathways of animal cells.
    Journal of Biological Chemistry 02/2012; 287(16):13239-48. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Glycosphingolipids from the ganglio-series are usually classified in four series according to the presence of 0 to 3 sialic acid residues linked to lactosylceramide. The transfer of sialic acid is catalyzed in the Golgi apparatus by specific sialyltransferases that show high specificity toward glycolipid substrates. ST8Sia I (EC 2.4.99.8, SAT-II, SIAT 8a) is the key enzyme controlling the biosynthesis of b- and c-series gangliosides. ST8Sia I is expressed at early developmental stages whereas in adult human tissues, ST8Sia I transcripts are essentially detected in brain. ST8Sia I together with b- and c-series gangliosides are also over-expressed in neuroectoderm-derived malignant tumors such as melanoma, glioblastoma, neuroblastoma and in estrogen receptor (ER) negative breast cancer, where they play a role in cell proliferation, migration, adhesion and angiogenesis. We have stably expressed ST8Sia I in MCF-7 breast cancer cells and analyzed the glycosphingolipid composition of wild type (WT) and GD3S+ clones. As shown by mass spectrometry, MCF-7 expressed a complex pattern of neutral and sialylated glycosphingolipids from globo- and ganglio-series. WT MCF-7 cells exhibited classical monosialylated gangliosides including G(M3), G(M2), and G(M1a). In parallel, the expression of ST8Sia I in MCF-7 GD3S+ clones resulted in a dramatic change in ganglioside composition, with the expression of b- and c-series gangliosides as well as unusual tetra- and pentasialylated lactosylceramide derivatives G(Q3) (II(3)Neu5Ac(4)-Gg(2)Cer) and G(P3) (II(3)Neu5Ac(5)-Gg(2)Cer). This indicates that ST8Sia I is able to act as an oligosialyltransferase in a cellular context.
    Molecules 01/2012; 17(8):9559-72. · 2.43 Impact Factor

Full-text (2 Sources)

View
44 Downloads
Available from
Oct 9, 2012