Article

The acute effects of NMDA antagonism: from the rodent to the human brain.

Yale University School of Medicine, VA Medical Center, Psychiatry Service 116A,West Haven, CT 06516, USA.
Brain Research Reviews (Impact Factor: 5.93). 08/2008; 60(2):279-86. DOI: 10.1016/j.brainresrev.2008.07.006
Source: PubMed

ABSTRACT In the past decade, the N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has received support from several lines of clinical evidence, including genetic, postmortem and human psychosis modeling. Recently, superiority of a mGluR2/3 receptor agonist over placebo was demonstrated in a randomized double-blind clinical trial in patients with schizophrenia. Considering the fact that currently available antipsychotics are all dopamine blockers to varying degrees without direct effects on glutamate transmission, this clinical trial highlights the potential utility of glutamatergic agents. In healthy volunteers, the NMDA channel antagonist ketamine induces transient cognitive dysfunction, perceptual aberrations and changes reminiscent of the negative symptoms of schizophrenia. However, how ketamine produces these effects is unclear. Preclinical data on NMDAR hypofunction offer further insights into the pathogenesis of the disorder as it relates to disorganized behavior, stereotypic movements and cognitive dysfunction in the rodent. This review evaluates the existing clinical and preclinical literature in an effort to shed light on the mechanism of action of ketamine as a probe to model NMDAR hypofunction in healthy volunteers. Included in this perspective are direct and indirect effects of ketamine at the neuronal level and in the intact brain. In addition to ketamine's effects on presynaptic and postsynaptic function, effects on glia and other neurotransmitter systems are discussed. While increased extracellular glutamate levels following NMDA antagonist administration stand out as a well replicated finding, evidence suggests that ketamine's effects are not restricted to pyramidal cells, but extend to GABAergic interneurons and the glia. In the glia, ketamine has significant downstream effects on the glutathione metabolism. Further studies are needed to identify the mechanistic connections between ketamine's effects at the cellular and behavioral levels.

1 Follower
 · 
160 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various types of antipsychotics have been developed for the treatment of schizophrenia since the accidental discovery of the antipsychotic activity of chlorpromazine. Although all clinically effective antipsychotic agents have common properties to interact with the dopamine D2 receptor (D2R) activation, their precise mechanisms of action remain elusive. Antipsychotics are well known to induce transcriptional changes of immediate early genes (IEGs), raising the possibility that gene expressions play an essential role to improve psychiatric symptoms. Here, we report that while different classes of antipsychotics have complex pharmacological profiles against D2R, they share common transcriptome fingerprint (TFP) profile of IEGs in the murine brain in vivo by quantitative real-time PCR (qPCR). Our data showed that various types of antipsychotics with a profound interaction of D2R including haloperidol (antagonist), olanzapine (antagonist), and aripiprazole (partial agonist) all share common spatial TFPs closely homologous to those of D2R antagonist sulpiride, and elicited greater transcriptional responses in the striatum than in the nucleus accumbens. Meanwhile, D2R agonist quinpirole and propsychotic NMDA antagonists such as MK-801 and phencyclidine (PCP) exhibited the contrasting TFP profiles. Clozapine and propsychotic drug methamphetamine (MAP) displayed peculiar TFPs that reflect their unique pharmacological property. Our results suggest that transcriptional responses are conserved across various types of antipsychotics clinically effective in positive symptoms of schizophrenia and also show that temporal and spatial TFPs may reflect the pharmacological features of the drugs. Thus, we propose that a TFP approach is beneficial to evaluate novel drug candidates for antipsychotic development.
    PLoS ONE 02/2015; 10(2):e0118510. DOI:10.1371/journal.pone.0118510 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When Eugen Bleuler coined the term 'schizophrenia' he believed that various causes of illness may underlie this disease. Currently, neurodevelopmental abnormalities and consecutive impairments in dopaminergic and glutamatergic neurotransmission are considered as major causes of schizophrenia. However, there are various indications for involvement of immune processes, at least in subgroups of patients. Circulating antineuronal antibodies provide a promising link between the well-described disturbances in neurotransmission and the immune hypothesis of schizophrenia. This review summarizes important studies that have examined the role of glutamate, dopamine, acetylcholine and serotonin receptor autoantibodies, and other antineuronal antibodies against synaptic proteins in the serum of patients diagnosed with schizophrenia. Currently, it is not known whether the presence of antineuronal antibodies in blood should be considered as a causal or disease-modulating factor in schizophrenia. Due to emerging evidence regarding the important role of the blood-brain barrier, combined testing of serum and cerebrospinal fluid is likely to be more appropriate to answer this question than pure serum analyses. We suggest implementation of such testing in first-onset and treatment-resistant patients as part of the diagnostic process. In addition, future clinical trials should evaluate if immunotherapy (e.g. cortisone pulse therapy, intravenous immunoglobulins, plasmapheresis, rituximab, or cyclophosphamide) is helpful in cases with a neuroinflammatory component.
    CNS Drugs 02/2015; DOI:10.1007/s40263-015-0233-3 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although diagnosis is a central issue in medical care, in psychiatry its value is still controversial. The function of diagnosis is to indicate treatments and to help clinicians take better care of patients. The fundamental role of diagnosis is to predict outcome and prognosis. To date serious concern persists regarding the clinical utility and predictive validity of the diagnosis system in psychiatry, which is at the most syndromal. Schizophrenia and bipolar disorder, which nosologists consider two distinct disorders, are the most discussed psychiatric illnesses. Recent findings in different fields of psychiatric research, such as neuroimaging, neuropathology, neuroimmunology, neuropsychology and genetics, have led to other conceptualizations. Individuals with schizophrenia or bipolar disorder vary greatly with regard to symptoms, illness course, treatment response, cognitive and functional impairment and biological correlates. In fact, it is possible to find heterogeneous correlates even within the same syndrome, i.e., from one stage of the disorder to another. Thus, it is possible to identify different subsyndromes, which share some clinical and neurobiological characteristics. The main goal of modern psychiatry is to ovethrow these barriers and to obtain a better understanding of the biological profiles underlying heterogeneous clinical features and thus reduce the variance and lead to a homogeneous definition. The translational research model, which connects the basic neuroscience research field with clinical experience in psychiatry, aims to investigate different neurobiological features of syndromes and of the shared neurobiological features between two syndromes. In fact, this approach should help us to better understand the neurobiological pathways underlying clinical entities, and even to distinguish different, more homogeneous, diagnostic subtypes. Copyright © 2015. Published by Elsevier B.V.
    Clinica Chimica Acta 02/2015; DOI:10.1016/j.cca.2015.02.029 · 2.76 Impact Factor

Full-text

Download
17 Downloads
Available from
Oct 2, 2014