Brain-derived neurotrophic factor enhances fetal respiratory rhythm frequency in the mouse preBötzinger complex in vitro.

Laboratoire de Neurobiologie Génétique et Intégrative, Institut Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France.
European Journal of Neuroscience (Impact Factor: 3.67). 09/2008; 28(3):510-20. DOI: 10.1111/j.1460-9568.2008.06345.x
Source: PubMed

ABSTRACT Brain-derived neurotrophic factor (BDNF) is required during the prenatal period for normal development of the respiratory central command; however, the underlying mechanisms remain unknown. To approach this issue, the present study examined BDNF regulation of fetal respiratory rhythm generation in the preBötzinger complex (preBötC) of the mouse, using transverse brainstem slices obtained from prenatal day 16.5 animals. BDNF application (100 ng/mL, 15 min) increased the frequency of rhythmic population activity in the preBötC by 43%. This effect was not observed when preparations were exposed to nerve growth factor (100 ng/mL, 30 min) or pretreated with the tyrosine kinase inhibitor K252a (1 h, 200 nm), suggesting that BDNF regulation of preBötC activity requires activation of its cognate tyrosine receptor kinase, TrkB. Consistent with this finding, single-cell reverse transcription-polymerase chain reaction experiments showed that one third of the rhythmically active preBötC neurons analysed expressed TrkB mRNA. Moreover, 20% expressed BDNF mRNA, suggesting that the preBötC is both a target and a source of BDNF. At the network level, BDNF augmented activity of preBötC glutamatergic neurons and potentiated glutamatergic synaptic drives in respiratory neurons by 34%. At the cellular level, BDNF increased the activity frequency of endogenously bursting neurons by 53.3% but had no effect on basal membrane properties of respiratory follower neurons, including the Ih current. Our data indicate that BDNF signalling through TrkB can acutely modulate fetal respiratory rhythm in association with increased glutamatergic drive and bursting activity in the preBötC.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the pre-Bötzinger complex (preBötC) was defined as the inspiratory rhythm generator long ago, the functional-anatomical characterization of its neuronal components is still being achieved. Recent advances have identified the expression of molecular markers in the preBötC neurons that, however, are not exclusive to specific respiratory neuron subtypes and have not always been related to specific cell morphologies. Here, we evaluated the morphology and the axonal projections of electrophysiologically defined respiratory neurons in the preBötC using whole-cell recordings and intracellular biocytin labeling. We found that respiratory pacemaker neurons are larger than expiratory neurons and that inspiratory neurons are smaller than pacemaker and expiratory neurons. Other morphological features such as somata shapes or dendritic branching patterns were not found to be significantly different among the preBötC neurons sampled. We also found that both pacemaker and inspiratory nonpacemaker neurons, but not expiratory neurons, show extensive axonal projections to the contralateral preBötC and show signs of electrical coupling. Overall, our data suggest that there are morphological differences between subtypes of preBötC respiratory neurons. It will be important to take such differences in consideration since morphological differences would influence synaptic responses and action potential propagation.
    Progress in brain research 01/2014; 209:39-56. DOI:10.1016/B978-0-444-63274-6.00003-5 · 5.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breathing in mammals is a seemingly straightforward behavior controlled by the brain. A brainstem nucleus called the preBötzinger Complex sits at the core of the neural circuit generating respiratory rhythm. Despite the discovery of this microcircuit almost 25 years ago, the mechanisms controlling breathing remain elusive. Given the apparent simplicity and well-defined nature of regulatory breathing behavior, the identification of much of the circuitry, and the ability to study breathing in vitro as well as in vivo, many neuroscientists and physiologists are surprised that respiratory rhythm generation is still not well-understood. Our view is that conventional rhythmogenic mechanisms involving pacemakers, inhibition, or bursting are problematic and that simplifying assumptions commonly made for many vertebrate neural circuits ignore consequential detail. We propose that novel emergent mechanisms govern generation of respiratory rhythm. That a mammalian function as basic as rhythm generation arises from complex and dynamic molecular, synaptic, and neuronal interactions within a diverse neural microcircuit highlights the challenges in understanding neural control of mammalian behaviors, many (considerably) more elaborate than breathing. We suggest that the neural circuit controlling breathing is inimitably tractable and may inspire general strategies for elucidating other neural microcircuits.This article is protected by copyright. All rights reserved
    The Journal of Physiology 11/2014; 593(1). DOI:10.1113/jphysiol.2014.277632 · 4.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although it has been documented that the nervous and the vascular systems share numerous analogies and are closely intermingled during development and pathological processes, interactions between the two systems are still poorly described. In the present study, we investigated whether Vascular Endothelial Growth Factor (VEGF), which is a key regulator of vascular development, also modulates neuronal developmental processes. We report that VEGF enhances the GABA/glycinergic but not glutamatergic synaptic activity in embryonic spinal motoneurons (MNs), without affecting MNs excitability. In response to VEGF, the frequency of these synaptic events but not their amplitude was increased. Blocking endogenous VEGF led to an opposite effect by decreasing frequency of synaptic events. We found that this effect occurred specifically at early developmental stages (E13.5 and E15.5) and vanished at the prenatal stage E17.5. Furthermore, VEGF was able to increase Vesicular Inhibitory Amino-Acid Transporter (VIAAT) density at the motoneuron membrane. Inhibition of single VEGF receptors did not modify electrophysiological parameters indicating receptor combinations or an alternative pathway. Altogether, our findings identify VEGF as a modulator of the neuronal activity during synapse formation and highlight a new ontogenic role for this angiogenic factor in the nervous system. © 2014 Wiley Periodicals, Inc. Develop Neurobiol, 2014.
    Developmental Neurobiology 11/2014; 74(11). DOI:10.1002/dneu.22187 · 4.19 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014