TNF induction of atrogin-1/MAFbx mRNA depends on Foxo4 expression but not AKT-Foxo1/3 signaling

Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
AJP Cell Physiology (Impact Factor: 3.67). 09/2008; 295(4):C986-93. DOI: 10.1152/ajpcell.00041.2008
Source: PubMed

ABSTRACT Murine models of starvation-induced muscle atrophy demonstrate that reduced protein kinase B (AKT) function upregulates the atrophy-related gene atrogin-1/MAFbx (atrogin). The mechanism involves release of inhibition of Forkhead transcription factors, namely Foxo1 and Foxo3. Elevated atrogin mRNA also corresponds with elevated TNF in inflammatory catabolic states, including cancer and chronic heart failure. Exogenous tumor necrosis factor (TNF) increases atrogin mRNA in vivo and in vitro. We used TNF-treated C2C12 myotubes to test the hypothesis that AKT-Foxo1/3 signaling mediates TNF regulation of atrogin mRNA. Here we confirm that exposure to TNF increases atrogin mRNA (+125%). We also confirm that canonical AKT-mediated regulation of atrogin is active in C2C12 myotubes. Inhibition of phosphoinositol-3 kinase (PI3K)/AKT signaling with wortmannin reduces AKT phosphorylation (-87%) and increases atrogin mRNA (+340%). Activation with insulin-like growth factor (IGF) increases AKT phosphorylation (+126%) and reduces atrogin mRNA (-15%). Although AKT regulation is intact, our data suggest it does not mediate TNF effects on atrogin. TNF increases AKT phosphorylation (+50%) and stimulation of AKT with IGF does not prevent TNF induction of atrogin mRNA. Nor does TNF appear to signal through Foxo1/3 proteins. TNF has no effect on Foxo1/3 mRNA or Foxo1/3 nuclear localization. Instead, TNF increases nuclear Foxo4 protein (+55%). Small interfering RNA oligos targeted to two distinct regions of Foxo4 mRNA reduce the TNF-induced increase in atrogin mRNA (-34% and -32%). We conclude that TNF increases atrogin mRNA independent of AKT via Foxo4. These results suggest a mechanism by which inflammatory catabolic states may persist in the presence of adequate growth factors and nutrition.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis-induced muscle wasting has severe clinical consequences, including muscle weakness, need for prolonged ventilatory support and stay in the intensive care unit, and delayed ambulation with risk for pulmonary and thromboembolic complications. Understanding molecular mechanisms regulating loss of muscle mass in septic patients therefore has significant clinical implications. Forkhead Box O (FOXO) transcription factors have been implicated in muscle wasting, partly reflecting upregulation of the ubiquitin ligases atrogin-1 and MuRF1. The influence of sepsis on FOXO transcription factors in skeletal muscle is poorly understood. We tested the hypothesis that sepsis upregulates expression and activity of FOXO transcription factors in skeletal muscle by a glucocorticoid-dependent mechanism. Sepsis in rats increased muscle FOXO1 and 3a mRNA and protein levels but did not influence FOXO4 expression. Nuclear FOXO1 levels and DNA binding activity were increased in septic muscle whereas FOXO3a nuclear levels were not increased during sepsis. Sepsis-induced expression of FOXO1 was reduced by the glucocorticoid receptor antagonist RU38486 and treatment of rats with dexamethasone increased FOXO1 mRNA levels suggesting that the expression of FOXO1 is regulated by glucocorticoids. Reducing FOXO1, but not FOXO3a, expression by siRNA in cultured L6 myotubes inhibited dexamethasone-induced atrogin-1 and MuRF1 expression, further supporting a role of FOXO1 in glucocorticoid-regulated muscle wasting. Results suggest that sepsis increases FOXO1 expression and activity in skeletal muscle by a glucocorticoid-dependent mechanism and that glucocorticoid-dependent upregulation of atrogin-1 and MuRF1 in skeletal muscle is regulated by FOXO1. The study is significant because it provides novel information about molecular mechanisms involved in sepsis-induced muscle wasting.
    The international journal of biochemistry & cell biology 05/2010; 42(5):701-11. DOI:10.1016/j.biocel.2010.01.006 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sialidase Neu2 is a cytosolic enzyme which is fully expressed in mature muscle myofibers. To investigate Neu2 expression during muscle atrophy, we employed an in vitro model consisting of terminally differentiated C2C12 myotubes exposed to different pro-atrophic stimuli that triggered catabolic pathways involved in proteasome activation or autophagy. Neu2 expression was unchanged in myotubes treated with TNF-alpha, a cytokine known to activate the proteasome. However, Neu2 transcript levels and enzymatic activity were downregulated in starved or dexamethasone-treated myotubes that showed proteosomal activation and several hallmarks of macroautophagy, such as formation of autophagosomes, the accumulation of LC3 dots and bulk degradation of long-lived proteins. Neu2 activity and protein levels were rescued upon cotreatment with the lysosomotropic agent NH4Cl, the autophagy inhibitor 3-methyladenine or cathepsin inhibitors, as well as by insulin administration, but were unaffected upon pharmacological inhibition of the proteasome. Moreover, HA- or GST-Neu2 recombinant fusion proteins were rapidly degraded in vitro by purified cathepsin L and B. Overall, we may conclude that Neu2 is degraded by lysosomal enzymes in myotubes undergoing autophagy-mediated atrophy. This study demonstrates that Neu2 enzyme degradation occurs in atrophic myotubes via macroautophagy and independently of proteasome activation.
    Biochimica et Biophysica Acta 05/2009; 1790(8):817-28. DOI:10.1016/j.bbagen.2009.04.006 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The FoxO family of transcription factors mediate a wide range of cellular responses from cell death to cell survival, growth inhibition and glucose utilization. This complex array of responses is regulated by an equally complex regulatory system, involving phosphorylation, ubiquitinization and acetylation, in addition to interactions with other transcription factors and transcriptional modifiers. In heart, FoxO proteins have been shown to be involved in development in limiting hypertrophic growth responses and in cardioprotection provided by silent information regulator 1 (Sirt1). However, the range of responses mediated by FoxO proteins and the clear evidence for involvement of FoxO regulators in cardiac pathology, suggest that further pathological actions of FoxO family members remain to be elucidated.
    Advances in Experimental Medicine and Biology 01/2009; 665:78-89. DOI:10.1007/978-1-4419-1599-3_6 · 2.01 Impact Factor