Article

Separation and quantification of neoagaro- and agaro-oligosaccharide products generated from agarose digestion by beta-agarase and HCl in liquid chromatography systems.

Department of Food Science, Biotechnology Division, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan.
Carbohydrate Research (Impact Factor: 2.04). 10/2008; 343(14):2443-50. DOI: 10.1016/j.carres.2008.06.019
Source: PubMed

ABSTRACT A series of neoagaro-oligosaccharides (NAOS) were separated and isolated by beta-agarase digestion and agaro-oligosaccharides (AOS) by HCl hydrolysis from agarose with defined quantity and degree of polymerization (DP). Profiles of the oligomer length in the crude product mixtures were monitored by two high-performance liquid chromatography (HPLC) systems: size-exclusion chromatography (SEC) and NH2-column chromatography (NH2-HPLC), coupled with an evaporative light-scattering detector (ELSD). Calibration curves were established separately to identify the DP and quantify the amount of the oligomer products analyzed in the two systems. Each system was optimized to generate a spectrum of saccharide oligomers with various DP, where the reaction yield for NAOS was 52.7% by 4U/mg beta-agarase and for AOS was 45.6% by 0.4M HCl. SEC resolved the product in size ranges consisting of DP 1-22 for NAOS and DP 1-14 for AOS. NH2-HPLC clearly resolved both distinct saccharide product sizes within DP 12. The optimized system was connected with a fraction collector to isolate and quantify these individually separated products. The total product yields of the recovered NAOS of DP 1-22 and AOS of DP 1-14 by the SEC system were 84.7% and 82.9%, respectively. NH2-HPLC recovered NAOS and AOS, both with a DP of 1-10 with total product yields of 48.9% and 90.0%, respectively. Isolated NAOS and AOS product fractions were inspected by (1)H NMR spectroscopy and ESIMS spectrometry to confirm structure, molecular mass, and purity. This study established feasible systems for the preparation and qualitative and quantitative measurements, as well as for the isolation of various sizes of oligomers generated from agarose.

0 Bookmarks
 · 
112 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of linear glucan saccharides (GS) with defined quantity and degree of polymerization (DP) were synthesized from α-d-glucose 1-phosphate (α-d-Glc 1-P) by phosphorylase-a. The GS product fractions with average DP 11, 22, 38, 52, 60, 70, and 79 were measured by HPSEC-ELSD system. Then the same seven fractions were resolved into individual peaks with DP: 6–14, 10–32, 27–55, 37–67, 44–75, 49–83 and 53–89 by HPAEC-PAD system. Results showed that measurement of α-d-Glc 1-P amount consuming during GS synthesis by both systems enable calculation of reaction yield. The reaction yield for the 24 h biosynthesis of the GS product was 25.3% (measured by HPSEC-ELSD) or 29.1% (measured by HPAEC-PAD). The HPSEC-ELSD and HPAEC-PAD systems were also successfully used for phosphorylase-a activity measurement in order to perform its kinetic characterization. This study established feasible systems for preparation of various sizes of the GS with defined DP and quantity as well as characterization of phosphorylase-a kinetics.
    Carbohydrate Polymers 01/2014; 106:209–216. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To obtain fermentable sugar from agarose, pretreatment of agarose by using acetic acid was conducted for short durations (10-30min) at low acid concentrations (1-5% (w/v)) and high temperatures (110-130°C). On testing the pretreated agarose by using an endo-β-agarase I (DagA), an exo-β-agarase II (Aga50D), and neoagarobiose hydrolase (NABH), we observed that the addition of the endo-type agarase did not increase the sugar yield. Use of the crude enzyme of Vibrio sp. EJY3 in combination with Aga50D and NABH including acetic acid pretreatment resulted in a 1.3-fold increase in the final reducing sugar yield (62.8% of theoretical maximum based on galactose and 3,6-anhydrogalactose in the initial agarose), compared to those obtained using Aga50D and NABH only after acetic acid pretreatment. The simultaneous saccharification and fermentation of pretreated agarose yielded ethanol of 37.1% theoretical maximum yield from galactose contained in the pretreated agarose.
    Bioresource Technology 03/2013; 136C:582-587. · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oligosaccharides were obtained from agar by enzymatic hydrolysis. Activated carbon adsorption separation was used to extract oligosaccharides, and gel chromatography separation was applied to further purify oligosaccharides. The result showed that activated carbon adsorption could remove the most salt impurities, and gel column chromatography could give the separation of the two kinds of oligosaccharides. ESI-MS, 13C-NMR revealed that the molecular weight (Mw) of two oligosaccharides were 630 and 936, which were identified as neoagarotetraose and neoagarohexaose respectively.
    Journal of Food Science and Technology -Mysore- 12/2013; · 1.12 Impact Factor