The Rx gene confers resistance to a range of potexviruses in transgenic Nicotiana plants.

INRA-URGV and University Evry Val d'Essonne, Evry, France.
Molecular Plant-Microbe Interactions (Impact Factor: 4.31). 10/2008; 21(9):1154-64. DOI: 10.1094/MPMI-21-9-1154
Source: PubMed

ABSTRACT Rx-mediated resistance was analyzed in Rx-expressing transgenic Nicotiana plants. The infection outcome of nine Potato virus X isolates mutated at amino acid positions 121 and 127 of the coat protein (CP) confirmed the key role of these amino acids but provided a more complex picture than previously reported. In particular, in Rx-expressing Nicotiana spp., eliciting activity modulated by amino acid 121 was conditioned by the nature of amino acid 127. These results suggest that the specificity of recognition might be modulated by host factors that are somehow subtly modified between Rx-expressing potato and Rx-expressing transgenic Nicotiana plants. Moreover, the CP of three Potexviruses, Narcissus mosaic virus (NMV), White clover mosaic virus (WClMV), and Cymbidium mosaic virus (CymMV), are all recognized by the Rx-based machinery and able to trigger an Rx-dependant hypersensitive response. A smaller elicitor of 90 amino acids was identified in the CP of NMV and WClMV, which contains the previously identified key positions 121 and 127. This elicitor is only weakly conserved (approximately 40% identity) among the CP of the various recognized viruses, suggesting that the Rx molecular machinery targets a conserved structural element of the Potexvirus CP rather than a conserved amino acid motif.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants possess a multilayered defense response, known as plant innate immunity, to infection by a wide variety of pathogens. Lectins, sugar binding proteins, play essential roles in the innate immunity of animal cells, but the role of lectins in plant defense is not clear. This study analyzed the resistance of certain Arabidopsis thaliana ecotypes to a potexvirus, plantago asiatica mosaic virus (PlAMV). Map-based positional cloning revealed that the lectin gene JACALIN-TYPE LECTIN REQUIRED FOR POTEXVIRUS RESISTANCE1 (JAX1) is responsible for the resistance. JAX1-mediated resistance did not show the properties of conventional resistance (R) protein-mediated resistance and was independent of plant defense hormone signaling. Heterologous expression of JAX1 in Nicotiana benthamiana showed that JAX1 interferes with infection by other tested potexviruses but not with plant viruses from different genera, indicating the broad but specific resistance to potexviruses conferred by JAX1. In contrast with the lectin gene RESTRICTED TEV MOVEMENT1, which inhibits the systemic movement of potyviruses, which are distantly related to potexviruses, JAX1 impairs the accumulation of PlAMV RNA at the cellular level. The existence of lectin genes that show a variety of levels of virus resistance, their targets, and their properties, which are distinct from those of known R genes, suggests the generality of lectin-mediated resistance in plant innate immunity.
    The Plant Cell 02/2012; 24(2):778-93. · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol oxidases (Alcohol: O2 Oxidoreductase; EC 1.1.3.x) are flavoenzymes that catalyze the oxidation of alcohols to the corresponding carbonyl compounds with a concomitant release of hydrogen peroxide. Based on substrate specificity, alcohol oxidases may be categorized broadly into four different groups namely, (a) Short chain alcohol oxidase (SCAO) (b) Long chain alcohol oxidase (LCAO) (c) Aromatic alcohol oxidase (AAO) and (d) Secondary alcohol oxidase (SAO). The sources reported for these enzymes are mostly limited to bacteria, yeast, fungi, plant, insect and mollusks. However, the quantum of reports for each category of enzymes considerably varies across these sources. The enzymes belonging to SCAO and LCAO are intracellular in nature whereas, AAO and SAO are mostly secreted to the medium. SCAO and LCAO are invariably reported as multimeric proteins with very high holoenzyme-molecular masses but the molecular characteristics of these enzymes are yet to be clearly elucidated. One of the striking features of the alcohol oxidases that make them distinct from the widely known alcohol dehydrogenase is the avidly bound cofactor to the redox center of these enzymes that obviate the need to supplement cofactor during the catalytic reaction. These flavin-based redox enzymes have gained enormous importance in the development of various industrial processes and products primarily for developing biosensors and production of various industrially useful carbonyl compounds. The present review provides an overview on alcohol oxidases from different categories focusing research on these oxidases during the last decade along with their potential industrial applications.
    Applied Microbiology and Biotechnology 01/2013; · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security.
    Biotechnology advances 01/2014; · 8.25 Impact Factor