Influence of abutment material on stability of peri-implant tissues: a systematic review.

Vilnius Implantology Center, Kalvariju str. 121-2, LT-08221, Vilnius, Lithuania.
The International journal of oral & maxillofacial implants (Impact Factor: 1.49). 01/2008; 23(3):449-56.
Source: PubMed

ABSTRACT The aim of this systematic review was to evaluate available evidence for a difference in the stability of peri-implant tissues between titanium abutments versus gold alloy, zirconium oxide, or aluminum oxide abutments.
Studies were identified by examining several electronic databases and major dental implant, prosthetic, and periodontal journals. To be selected for the preliminary article pool, the article must have been written in the English language and published from 1980 to March 2007. Articles were sorted based on the nature of the study. In vitro studies and literature reviews were excluded. The included articles were clinical, human histology, and animal studies. Case reports, case series, uncontrolled clinical trials, and clinical studies with teeth treated as a control were excluded from the final review.
The initial article pool included 40 articles of which 9 met the inclusion criteria: 3 animal studies, 2 human histological studies, and 4 randomized clinical trials. Soft tissue recession was not accurately measured in the included clinical studies. Assessment of peri-implant tissues around zirconium oxide and titanium abutments was described only in animal and human histologic studies. Due to differences in study types, timing of follow-ups, and outcome variables, meta-analysis could not be performed.
Included studies revealed that titanium abutments did not maintain a higher bone level in comparison to gold alloy, aluminum oxide, or zirconium oxide abutments. However, there is a lack of information about the clinical performance of zirconium oxide and gold alloy abutments as compared to titanium abutments.

Download full-text


Available from: Tomas Linkevicius, Jan 12, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non-quantitatively. All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented.
    The journal of advanced prosthodontics 04/2015; 7(2):151-9. DOI:10.4047/jap.2015.7.2.151 · 0.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial cells attachment on five different dental implant abutment surface candidates
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: A randomized controlled trial was performed to assess soft tissue cell adhesion to implant titanium abutments subjected to different cleaning procedures and test if plasma cleaning can enhance cell adhesion at an early healing time. Study Design: Eighteen patients with osseointegrated and submerged implants were included. Before re-opening, 18 abutments were divided in 3 groups corresponding to different clinical conditions with different cleaning processes: no treatment (G1), laboratory customization and cleaning by steam (G2), cleaning by plasma of Argon (G3). Abutments were removed after 1 week and scanning electron microscopy was used to analyze cell adhesion to the abutment surface quantitatively (percentage of area occupied by cells) and qualitatively (aspect of adhered cells and presence of contaminants). Results: Mean percentages of area occupied by cells were 17.6 ± 22.7%, 16.5 ± 12.9% and 46.3 ± 27.9% for G1, G2 and G3 respectively. Differences were statistically significant between G1 and G3 (p=0.030), close to significance between G2 and G3 (p=0.056), and non-significant between G1 and G2 (p=0.530). The proportion of samples presenting adhered cells was homogeneous among the 3 groups (p-valor = 1.000). In all cases cells presented a flattened aspect; in 2 cases cells were less efficiently adhered and in 1 case cells presented filipodia. Three cases showed contamination with cocobacteria. Conclusions: Within the limits of the present study, plasma of Argon may enhance cell adhesion to titanium abutments, even at the early stage of soft tissue healing. Further studies with greater samples are necessary to confirm these findings. Key words:Connective tissue, dental abutments, randomized controlled trial, clinical research, glow discharged abutment, plasma cleaning.
    Medicina oral, patologia oral y cirugia bucal 10/2013; 19(2). DOI:10.4317/medoral.19329 · 1.10 Impact Factor