Article

Effect of Salts and Dissolved Gas on Optical Cavitation near Hydrophobic and Hydrophilic Surfaces

Langmuir (Impact Factor: 4.38). 05/1997; 13(11). DOI: 10.1021/la960265k

ABSTRACT The effect of four 1:1 electrolytes (KCl, KBr, NH4Cl, and CH3COONa) on optical (stimulated by laser pulse) cavitation in thin layers bounded by hydrophobic and hydrophilic surfaces has been explored. For water and all salts (up to 1 M) in the case of hydrophobic surfaces, the cavitation probability is enhanced as compared with the case of hydrophilic walls. The increased cavitation probability observed with hydrophobic surfaces can be linked to an enhanced concentration of gas-filled submicrocavities close to them. The phenomenon seems to depend strongly on dissolved gas. Variations in the probability of cavitation that occur with electrolyte are significant and depend on its concentration and type. The specific effect of electrolytes on optical cavitation in a thin layer likely makes sense only in terms of the previously neglected ionic dispersion interactions. The results obtained may have implications for the mechanisms of the long-range hydrophobic interactions between surfaces and hydrophobic slippage.

0 Bookmarks
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interaction of bubbles with solid surfaces is considered with respect to approach/contact, film rupture, and bubble attachment, with particle separation by flotation the classic example. During approach/contact bubble deformation may occur and the interaction involves momentum transfer as described by hydrodynamic forces. Subsequent interaction involving film rupture is governed by interfacial forces including van der Waals forces, electrostatic forces, hydration forces, and hydrophobic forces. The structure and stability of the film is considered with respect to interfacial water structure and the presence of surface stabilized, nanosized gas bubbles. Featured properties of the solid surface (roughness, heterogeneity) have a significant influence on water film stability and rupture. Finally the bubble attachment is examined in terms of the three-phase line of contact, its formation and relaxation.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interaction of bubbles with solid surfaces is considered with respect to approach/contact, film rupture, and bubble attachment, with particle separation by flotation the classic example. During approach/contact bubble deformation may occur and the interaction involves momentum transfer as described by hydrodynamic forces. Subsequent interaction involving film rupture is governed by interfacial forces including van der Waals forces, electrostatic forces, hydration forces, and hydrophobic forces. The structure and stability of the film is considered with respect to interfacial water structure and the presence of surface stabilized, nanosized gas bubbles. Featured properties of the solid surface (roughness, heterogeneity) have a significant influence on water film stability and rupture. Finally the bubble attachment is examined in terms of the three-phase line of contact, its formation and relaxation.
    Encyclopedia of Surface and Colloid Science, Edited by P. Somasundaran, 01/2007: chapter 1:1: pages 1-29; Taylor & Francis.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aggregation of nanodispersed particles plays an essential role in the technology of colloidal systems. In this work the formation of clusters composed of long-living gas nanobubbles in electrolyte aqueous solutions has been studied experimentally by combining three distinct but complementary laser techniques: dynamic light scattering (DLS), laser phase microscopy, and polarimetric scatterometry. We propose a mathematical approach to modeling the structure of spherical particle clusters that is based on the solution of inverse problem of optical wave scattering with allowance for cluster−cluster aggregation. In this way we found the characteristic size of nanobubbles and fractal properties of their clusters in aqueous solutions of NaCl. The described method can be applied to the exploration of clustering in a wide class of disperse systems of spherical particles.
    Journal of Chemical & Engineering Data 09/2012; · 2.05 Impact Factor

Full-text

Download
7 Downloads
Available from
Oct 20, 2014