Article

Inflammatory bowel disease: Moving toward a stem cell-based therapy.

Department of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, Bologna, Italy.
World Journal of Gastroenterology (Impact Factor: 2.43). 09/2008; 14(29):4616-26.
Source: PubMed

ABSTRACT The incidence and prevalence of Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel diseases (IBD), are rising in western countries. The modern hygienic lifestyle is probably at the root of a disease where, in genetically susceptible hosts, the intestinal commensal flora triggers dysregulated immune and inflammatory responses. Current therapies ranging from anti-inflammatory drugs to immunosuppressive regimens, remain inadequate. Advances in our understanding of the cell populations involved in the pathogenetic processes and recent findings on the regenerative, trophic and immunoregulatory potential of stem cells open new paths in IBD therapy. Hematopoietic and mesenchymal stem cells are catalyzing the attention of IBD investigators. This review highlights the pivotal findings for stem cell-based approaches to IBD therapy and collects the encouraging results coming in from clinical trials.

Full-text

Available from: Giacomo Lanzoni, Jun 06, 2015
0 Followers
 · 
117 Views
  • Source
    05/2012; 22(5):621-626. DOI:10.5352/JLS.2012.22.5.621
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution.
    Nutrients 02/2015; 7(2):764-84. DOI:10.3390/nu7020764 · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Systemic 1,25(OH)2D3 treatment ameliorating murine IBD could not be applied to patients because of hypercalcemia. We tested the hypothesis that increasing 1,25(OH)2D3 synthesis locally by targeting delivery of the 1α-hydroxylase gene (CYP27B1) to the inflamed bowel would ameliorate IBD without causing hypercalcemia. Our targeting strategy is the use of CD11b(+)/Gr1(+) monocytes as the cell vehicle and a macrophage-specific promoter (Mac1) to control CYP27B1 expression. The CD11b(+)/Gr1(+) monocytes migrated initially to inflamed colon and some healthy tissues in DSS colitis mice; however, only the migration of monocytes to the inflamed colon was sustained. Adoptive transfer of Gr1(+) monocytes did not cause hepatic injury. Infusion of Mac1-CYP27B1-modified monocytes increased body weight gain, survival, and colon length, and expedited mucosal regeneration. Expression of pathogenic Th17 and Th1 cytokines (IL-17a and IFN-γ) was decreased, while expression of protective Th2 cytokines (IL-5 and IL-13) was increased, by the treatment. This therapy also enhanced tight junction gene expression in the colon. No hypercalcemia occurred following this therapy. In conclusion, we have for the first time obtained proof-of-principle evidence for a novel monocyte-based adoptive CYP27B1 gene therapy using a mouse IBD model. This strategy could be developed into a novel therapy for IBD and other autoimmune diseases.Molecular Therapy (2014); doi:10.1038/mt.2014.201.
    Molecular Therapy 02/2015; 23(2):339–351. DOI:10.1038/mt.2014.201 · 6.43 Impact Factor