Salt-driven equilibrium between two conformations in the HAMP domain from Natronomonas pharaonis: the language of signal transfer?

Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
Journal of Biological Chemistry (Impact Factor: 4.65). 09/2008; 283(42):28691-701. DOI: 10.1074/jbc.M801931200
Source: PubMed

ABSTRACT HAMP domains (conserved in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases) perform their putative function as signal transducing units in diversified environments in a variety of protein families. Here the conformational changes induced by environmental agents, namely salt and temperature, on the structure and function of a HAMP domain of the phototransducer from Natronomonas pharaonis (NpHtrII) in complex with sensory rhodopsin II (NpSRII) were investigated by site-directed spin labeling electron paramagnetic resonance. A series of spin labeled mutants were engineered in NpHtrII157, a truncated analog containing only the first HAMP domain following the transmembrane helix 2. This truncated transducer is shown to be a valid model system for a signal transduction domain anchored to the transmembrane light sensor NpSRII. The HAMP domain is found to be engaged in a "two-state" equilibrium between a highly dynamic (dHAMP) and a more compact (cHAMP) conformation. The structural properties of the cHAMP as proven by mobility, accessibility, and intra-transducer-dimer distance data are in agreement with the four helical bundle NMR model of the HAMP domain from Archaeoglobus fulgidus.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establish the observed structure-to-function relationships. Pulsed dipolar electron spin resonance spectroscopy of spin-labeled soluble receptors active in cells verify that the crystallographically defined HAMP conformers are maintained in the receptors and influence the structure and activity of downstream domains accordingly. Mutation of HR2, a key residue for setting the HAMP conformation and generating an inhibitory signal, shifts HAMP structure and receptor output to an activating state. Another HR2 variant displays an inverted response with respect to ligand and demonstrates the fine energetic balance between "on" and "off" conformers. A DExG motif found in membrane proximal HAMP domains is shown to be critical for responses to extracellular ligand. Our findings directly correlate in vivo signaling with HAMP structure, stability, and dynamics to establish a comprehensive model for HAMP-mediated signal relay that consolidates existing views on how conformational signals propagate in receptors. Moreover, we have developed a rational means to manipulate HAMP structure and function that may prove useful in the engineering of bacterial taxis responses.
    PLoS Biology 02/2013; 11(2):e1001479. · 12.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HAMP domain is a linker region in prokaryotic sensor proteins and relays input signals to the transmitter domain and vice versa. Functional as a dimer, the structure of HAMP shows a parallel coiled-coil motif comprising four helices. To date, it is unclear how HAMP can relay signals from one domain to another, although several models exist. In this work, we use molecular simulation to test the hypothesis that HAMP adopts different conformations, one of which represents an active, signal-relaying configuration, and another an inactive, resting state. We first performed molecular dynamics simulation on the prototype HAMP domain Af1503 from . We explored its conformational space by taking the structure of the A291F mutant disabling HAMP activity as a starting point. These simulations revealed additional conformational states that differ in the tilt angles between the helices as well as the relative piston shifts of the helices relative to each other. By enhancing the sampling in a metadynamics set up, we investigated three mechanistic models for HAMP signal transduction. Our results indicate that HAMP can access additional conformational states characterized by piston motion. Furthermore, the piston motion of the N-terminal helix of one monomer is directly correlated with the opposite piston motion of the C-terminal helix of the other monomer. The change in piston motion is accompanied by a change in tilt angle between the monomers, thus revealing that HAMP exhibits a collective motion, a combination of changes in tilt angles and a piston-like displacement. Our results provide insights into the conformational changes that underlie the signaling mechanism involving HAMP.
    PLoS Computational Biology 02/2013; 9(2):e1002913. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy has emerged as an efficient tool to elucidate the structure and the conformational dynamics of proteins under conditions close to the native state. This review article summarizes the basics as well as recent progress in SDSL and EPR methods especially for investigations on protein structure, protein function, and interaction of proteins with other proteins or nucleic acids. Labeling techniques as well as EPR methods are introduced and exemplified with applications to systems that have been studied in the author's lab in the past 15 years, headmost the sensory rhodopsin-transducer complex mediating the photophobic response of the halophilic archaeum Natronomonas pharaonis. Further examples underline the application of SDSL EPR spectroscopy to answer specific questions about the system under investigation, e.g. the nature and influence of interactions of proteins with other proteins or nucleic acids. Finally, it is discussed how SDSL EPR can be combined with other biophysical techniques to combine the strengths of the different methodologies.
    Biological Chemistry 08/2013; 394(10):1281-1300. · 2.68 Impact Factor