Article

Phosphorylation of Plk1 at Ser326 regulates its functions during mitotic progression

Department of Biochemistry, Cancer Center, Purdue University, West Lafayette, IN 47907, USA.
Oncogene (Impact Factor: 8.56). 09/2008; 27(52):6635-45. DOI: 10.1038/onc.2008.262
Source: PubMed

ABSTRACT Polo-like kinase 1 (Plk1), the best characterized member of the mammalian polo-like kinase family, is well regulated throughout the cell cycle at the protein expression level. Moreover, it is known that Plk1 kinase activity is also regulated at the post-translational level through phosphorylation. However, the upstream kinases of Plk1 have not been identified. Although the involvement of the p38 MAP kinase pathway in cellular responses to stress has been well documented, the role of this pathway in normal cell cycle progression is unclear. Here, we show that phosphorylated p38 and MAP kinase-activated protein kinase 2 (MK2) are colocalized with Plk1 to the spindle poles during prophase and metaphase. Specific depletion of various members of the p38 MAP kinase pathway by the use of RNA interference revealed that the pathway is required for mitotic progression under normal growth conditions. Furthermore, MK2 directly phosphorylates Ser326 of Plk1. Ectopic expression of Plk1-S326A completely blocked cells at mitosis, likely due to the defect of bipolar spindle formation and subsequent activation of the spindle checkpoint. Only Plk1-S326E, but not the Plk1-S326A, efficiently rescued the p38 or MK2-depletion-induced mitotic defects, further solidifying the requirement of S326 phosphorylation during mitotic progression.

0 Followers
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serous uterine endometrial carcinomas are aggressive type II cancers with poor outcomes for which new treatment strategies are urgently needed, in particular, strategies that augment sensitivity to established chemotherapy regimens. The tumor suppressor gene TP53 is dysregulated in more than 90% of serous tumors, altering master regulators of the G2/M cell cycle checkpoint in unique and predictable ways and desensitizing cells to chemotherapy. We hypothesized that synthetic lethality can be achieved in endometrial cancer cells with mutant p53 by combining paclitaxel with agents to overcome G2/M arrest and induce mitotic catastrophe. The combination of BIBF1120, an investigational VEGFR, PDGFR, and FGFR multityrosine kinase inhibitor with established anti-angiogenic activity, with paclitaxel abrogated the G2/M checkpoint in p53-null endometrial cancer cells via modulation of G2/M checkpoint regulators followed by induction of mitotic cell death. In endometrial cancer cells harboring an oncogenic gain-of-function p53 mutation, synthetic lethality was created by combining paclitaxel with BIBF1120 and a histone deacetylase inhibitor, which serves to destabilize mutant p53. These cells were also sensitive to an inhibitor of the G2/M kinase Wee1 in combination with paclitaxel. These findings reveal that, in addition to antiangiogenic activity, the angiokinase inhibitor BIBF1120 can be used to restore sensitivity to paclitaxel and induce mitotic cell death in endometrial cancer cells with non-functional p53. These preclinical data serve as a critical platform for the creative design of future clinical trials utilizing molecularly enhanced chemotherapy to achieve synthetic lethality based on the mutational landscape.
    Obstetrics and Gynecology International 12/2013; 2013:828165. DOI:10.1155/2013/828165
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polo-like kinase-1 (Plk1) is phosphorylated on Thr210 for activation during mitosis. Here, we investigated the question of which kinase(s) is the specific upstream kinase of mitotic Plk1. Upstream kinases of Plk1 were purified from mitotic cell extracts through column chromatography procedures, and identified by mass spectrometry. Candidates for Plk1 kinase included p21-activated kinase, aurora A, and mammalian Ste20-like kinases. Immunoprecipitates of these proteins from mitotic cell extracts phosphorylated Plk1 on Thr210. Even if the activity of Aurora A was blocked with a specific inhibitor, Plk1 phosphorylation still occurred, suggesting that function of Plk1 could be controlled by these kinases for proper mitotic progression, as well as by Aurora A in very late G2 phase for the beginning of mitosis.
    FEBS letters 10/2010; 584(20):4299-305. DOI:10.1016/j.febslet.2010.09.025 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although p38 activity is reported to be required as cells enter mitosis for proper spindle assembly and checkpoint function, its role during the division process remains controversial in lieu of direct data. We therefore conducted live cell studies to determine the effect on mitosis of inhibiting or depleting p38. We found that in the absence of p38 activity the duration of mitosis is prolonged by approximately 40% in nontransformed human RPE-1, approximately 80% in PtK2 (rat kangaroo), and approximately 25% in mouse cells, and this prolongation leads to an elevated mitotic index. However, under this condition chromatid segregation and cytokinesis are normal. Using Mad2/YFP-expressing cells, we show the prolongation of mitosis in the absence of p38 activity is directly due to a delay in satisfying the mitotic checkpoint. Inhibiting p38 did not affect the rate of chromosome motion; however, it did lead to the formation of significantly (10%) longer metaphase spindles. From these data we conclude that normal p38 activity is required for the timely stable attachment of all kinetochores to spindle microtubules, but not for the fidelity of the mitotic process. We speculate that p38 activity promotes timely checkpoint satisfaction by indirectly influencing those motor proteins (e.g., Klp10, Klp67A) involved in regulating the dynamics of kinetochore microtubule ends.
    Molecular biology of the cell 05/2010; 21(13):2150-60. DOI:10.1091/mbc.E10-02-0125 · 5.98 Impact Factor

Preview

Download
2 Downloads
Available from