Article

The platelet release reaction: just when you thought platelet secretion was simple.

Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
Current opinion in hematology (Impact Factor: 4.05). 10/2008; 15(5):537-41. DOI: 10.1097/MOH.0b013e328309ec74
Source: PubMed

ABSTRACT In response to agonists produced at vascular lesions, platelets release a host of components from their three granules: dense core, alpha, and lysosome. This releasate activates other platelets, promotes wound repair, and initiates inflammatory responses. Although widely accepted, the specific mechanisms underlying platelet secretion are only now coming to light. This review focuses on the core machinery required for platelet secretion.
Proteomic analyses have provided a catalog of the components released from activated platelets. Experiments using a combination of in-vitro secretion assays and knockout mice have led to assignments of both vesicle-soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (v-SNARE) and target membrane SNARE to each of the three secretion events. SNARE knockout mice are also proving to be useful models for probing the role of platelet exocytosis in vivo. Other studies are beginning to identify SNARE regulators, which control when and where SNAREs interact during platelet activation.
A complex set of protein-protein interactions control the membrane fusion events required for the platelet release reaction. SNARE proteins are the core elements but the proteins that control SNARE interactions represent key points at which platelet signaling cascades could affect secretion and thrombosis.

0 Followers
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CD40 ligand (CD40L) is a transmembrane molecule of crucial interest in cell signaling in innate and adaptive immunity. It is expressed by a variety of cells, but mainly by activated T-lymphocytes and platelets. CD40L may be cleaved into a soluble form (sCD40L) that has a cytokine-like activity. Both forms bind to several receptors, including CD40. This interaction is necessary for the antigen specific immune response. Furthermore, CD40L and sCD40L are involved in inflammation and a panoply of immune related and vascular pathologies. Soluble CD40L is primarily produced by platelets after activation, degranulation and cleavage, which may present a problem for transfusion. Soluble CD40L is involved in adverse transfusion events including transfusion related acute lung injury (TRALI). Although platelet storage designed for transfusion occurs in sterile conditions, platelets are activated and release sCD40L without known agonists. Recently, proteomic studies identified signaling pathways activated in platelet concentrates. Soluble CD40L is a good candidate for platelet activation in an auto-amplification loop. In this review, we describe the immunomodulatory role of CD40L in physiological and pathological conditions. We will focus on the main signaling pathways activated by CD40L after binding to its different receptors.
    International Journal of Molecular Sciences 12/2014; 15(12):22342-22364. DOI:10.3390/ijms151222342 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of platelets extends beyond hemostasis. The pivotal role of platelets in inflammation has shed new light on the natural history of conditions associated with acute or chronic inflammation. Beyond the preservation of vascular integrity, platelets are essential to tissue homeostasis and platelet-derived products are already used in the clinics. Unanticipated was the role of platelets in the adaptative immune response, allowing a renewed conceptual approach of auto-immune diseases. Platelets are also important players in cancer growth and dissemination. Platelets fulfill most of their functions through the expression of still incompletely characterized membrane-bound or soluble mediators. Among them, CD154 holds a peculiar position, as platelets represent a major source of CD154 and as CD154 contributes to most of these new platelet attributes. Here, we provide an overview of some of the new frontiers that the study of platelet CD154 is opening, in inflammation, tissue homeostasis, immune response, hematopoiesis and cancer.
    03/2015; 4:6. DOI:10.1186/s40164-015-0001-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine-1-phosphate (S1P) is an intracellularly generated bioactive lipid essential for development, vascular integrity, and immunity. These functions are mediated by S1P-selective cell surface G-protein coupled receptors. S1P signaling therefore requires extracellular release of this lipid. Several cell types release S1P and evidence for both plasma membrane transporter-mediated and vesicle-dependent secretion has been presented. Platelets are an important source of S1P and can release it in response to agonists generated at sites of vascular injury. S1P release from agonist-stimulated platelets was measured in the presence of a carrier molecule (albumin) using HPLC-MS/MS. The kinetics and agonist-dependence of S1P release were similar to that of other granule cargo e.g. platelet factor IV (PF4). Agonist-stimulated S1P release was defective in platelets from Unc13d(Jinx) (Munc13-4 null) mice demonstrating a critical role for regulated membrane fusion in this process. Consistent with this observation, platelets efficiently converted fluorescent NBD-sphingosine to its phosphorylated derivative which accumulated in granules. Fractionation of platelet organelles revealed the presence of S1P in both the plasma membrane and in α-granules. Resting platelets contained a second pool of constitutively releasable S1P that was more rapidly labeled by exogenously added sphingosine. Our studies indicate that platelets contain two pools of S1P that are released extracellularly: a readily-exchangeable, metabolically active pool of S1P, perhaps in the plasma membrane, and a granular pool that requires platelet activation and regulated exocytosis for release.
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 08/2014; 1841(11). DOI:10.1016/j.bbalip.2014.08.013 · 4.50 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
May 22, 2014