Article

Advantages of a dual-tracer model over reference tissue models for binding potential measurement in tumors

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
Physics in Medicine and Biology (Impact Factor: 2.92). 10/2012; 57(20):6647-59. DOI: 10.1088/0031-9155/57/20/6647
Source: PubMed

ABSTRACT The quantification of tumor molecular expression in vivo could have a significant impact for informing and monitoring emerging targeted therapies in oncology. Molecular imaging of targeted tracers can be used to quantify receptor expression in the form of a binding potential (BP) if the arterial input curve or a surrogate of it is also measured. However, the assumptions of the most common approaches (reference tissue models) may not be valid for use in tumors. In this study, the validity of reference tissue models is investigated for use in tumors experimentally and in simulations. Three different tumor lines were grown subcutaneously in athymic mice and the mice were injected with a mixture of an epidermal growth factor receptor-targeted fluorescent tracer and an untargeted fluorescent tracer. A one-compartment plasma input model demonstrated that the transport kinetics of both tracers was significantly different between tumors and all potential reference tissues, and using the reference tissue model resulted in a theoretical underestimation in BP of 50% ± 37%. On the other hand, the targeted and untargeted tracers demonstrated similar transport kinetics, allowing a dual-tracer approach to be employed to accurately estimate BP (with a theoretical error of 0.23% ± 9.07%). These findings highlight the potential for using a dual-tracer approach to quantify receptor expression in tumors with abnormal hemodynamics, possibly to inform the choice or progress of molecular cancer therapies.

Full-text

Available from: Kenneth M Tichauer, Jun 12, 2015
0 Followers
 · 
93 Views
  • Journal of Biomedical Optics 02/2015; 20(2):26001. DOI:10.1117/1.JBO.20.2.026001 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery.
    Cancer Research 10/2014; 74(24). DOI:10.1158/0008-5472.CAN-14-0141 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Simultaneous dynamic fluorescent imaging of a suitable untargeted tracer in conjunction with any molecular targeted fluorescent agent has been shown to be a powerful approach for quantifying cancer-specific cell surface receptors in vivo in the presence of non-specific uptake and tracer delivery variability. The identification of a "suitable" untargeted tracer (i.e., one having equivalent plasma and tissue delivery pharmacokinetics to the targeted tracer) for every targeted tracer, however, may not always be feasible or could require extensive testing. This work presents a "deconvolution" approach capable of correcting for plasma and tissue-delivery pharmacokinetic differences between tracers by quantifying dynamic differences in targeted and untargeted tracer uptake in a receptor-free tissue (one devoid of targeted molecular species) and correcting uptake in all other tissues accordingly. This deconvolution correction approach is evaluated in theoretical models and explored in an in vivo mouse xenograft model of human glioma. In the animal experiments, epidermal growth factor receptor (EGFR: a receptor known to be overexpressed in the investigated glioma cell line) was targeted using a fluorescent tracer with very different plasma pharmacokinetics than a second untargeted fluorescent tracer. Without correcting for these differences, the dual-tracer approach yielded substantially higher estimations of EGFR concentration in all tissues than expected; however, deconvolution correction was able to produce estimates that matched ex vivo validation.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2014; DOI:10.1117/12.2037427 · 0.20 Impact Factor