Article

A "Forward Genomics" Approach Links Genotype to Phenotype using Independent Phenotypic Losses among Related Species.

Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address: .
Cell Reports (Impact Factor: 7.21). 09/2012; DOI: 10.1016/j.celrep.2012.08.032
Source: PubMed

ABSTRACT Genotype-phenotype mapping is hampered by countless genomic changes between species. We introduce a computational "forward genomics" strategy that-given only an independently lost phenotype and whole genomes-matches genomic and phenotypic loss patterns to associate specific genomic regions with this phenotype. We conducted genome-wide screens for two metabolic phenotypes. First, our approach correctly matches the inactivated Gulo gene exactly with the species that lost the ability to synthesize vitamin C. Second, we attribute naturally low biliary phospholipid levels in guinea pigs and horses to the inactivated phospholipid transporter Abcb4. Human ABCB4 mutations also result in low phospholipid levels but lead to severe liver disease, suggesting compensatory mechanisms in guinea pig and horse. Our simulation studies, counts of independent changes in existing phenotype surveys, and the forthcoming availability of many new genomes all suggest that forward genomics can be applied to many phenotypes, including those relevant for human evolution and disease.

0 Followers
 · 
207 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs due to the loss of the terminal enzyme in their biosynthetic pathway, L-gulonolactone oxidase (GULO). The alternative pathways found in land plants and Euglena use a different terminal enzyme, L-galactonolactone dehydrogenase (GLDH). The evolutionary processes leading to these differing pathways and their contribution to the cellular roles of ascorbate remain unclear. Here we present molecular and biochemical evidence demonstrating that GULO was functionally replaced with GLDH in photosynthetic eukaryote lineages following plastid acquisition. GULO has therefore been lost repeatedly throughout eukaryote evolution. The formation of the alternative biosynthetic pathways in photosynthetic eukaryotes uncoupled ascorbate synthesis from hydrogen peroxide production and likely contributed to the rise of ascorbate as a major photoprotective antioxidant.
    eLife Sciences 03/2015; 4. DOI:10.7554/eLife.06369 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genomic and developmental complexity of vertebrates is commonly attributed to two rounds of whole genome duplications which occurred at the base of the vertebrate radiation. These duplications led to the rise of several, multi-gene families of developmental proteins like the fibroblast growth factors (FGFs); a signaling protein family which functions at various stages of embryonic development. One of the major FGF assemblages arising from these duplications is the FGF8 subfamily, which includes FGF8, FGF17, and FGF18 in tetrapods. While FGF8 and FGF18 are found in all tetrapods and are critical for embryonic survival, genomic analyses suggest putative loss of FGF17 in various lineages ranging from frogs and fish, to the chicken. This study utilizes 27 avian genomes in conjunction with molecular analyses of chicken embryos to confirm the loss of FGF17 in chicken as a true, biological occurrence. FGF17 is also missing in the turkey, black grouse, Japanese quail and northern bobwhite genomes. These species, along with chicken, form a monophyletic clade in the order Galliformes. Four additional species, members of the clade Passeroidea, within the order Passeriformes, are also missing FGF17. Additionally, analysis of intact FGF17 in other avian lineages reveals that it is still under strong purifying selection, despite being seemingly dispensable. Thus, FGF17 likely represents a molecular spandrel arising from a genome duplication event and due to its high connectivity with FGF8/FGF18, and potential for interference with their function, is retained under strong purifying selection, despite itself not having a strong selective advantage. Copyright © 2015. Published by Elsevier B.V.
    Gene 03/2015; 563(2). DOI:10.1016/j.gene.2015.03.027 · 2.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development and function of our brain are governed by a genetic blueprint, which reflects dynamic changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-generation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with a neuroanatomical or neurobehavioral phenotype. Here, we review some of the genetic changes in both protein-coding and noncoding regions that affect brain development and evolution, as well as recent progress in brain transcriptomics. Understanding these genetic changes may provide novel insights into neurological and neuropsychiatric disorders, such as autism and schizophrenia. Copyright © 2015 Elsevier Inc. All rights reserved.