Examination of inertial cavitation of Optison in producing sonoporation of chinese hamster ovary cells.

Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Ultrasound in medicine & biology (Impact Factor: 2.46). 08/2008; 34(12):2009-18. DOI: 10.1016/j.ultrasmedbio.2008.05.003
Source: PubMed

ABSTRACT The objective of this project was to elucidate the relationship between ultrasound contrast agents (UCAs) and sonoporation. Sonoporation is an ultrasound-induced, transient cell membrane permeability change that allows for the uptake of normally impermeable macromolecules. Specifically, this study will determine the role that inertial cavitation plays in eliciting sonoporation. The inertial cavitation thresholds of the UCA, Optison, are compared directly with the results of sonoporation to determine the involvement of inertial cavitation in sonoporation. Chinese hamster ovary (CHO) cells were exposed as a monolayer in a solution of Optison, 500,000 Da fluorescein isothiocyanate-dextran (FITC-dextran), and phosphate-buffered saline (PBS) to 30 s of pulsed ultrasound at 3.15-MHz center frequency, 5-cycle pulse duration and 10-Hz pulse repetition frequency. The peak rarefactional pressure (P(r)) was varied over a range from 120 kPa-3.5 MPa, and five independent replicates were performed at each pressure. As the P(r) was increased, from 120 kPa-3.5 MPa, the fraction of sonoporated cells among the total viable population increased from 0.63-10.21%, with the maximum occurring at 2.4 MPa. The inertial cavitation threshold for Optison at these exposure conditions has previously been shown to be in the range 0.77-0.83 MPa, at which sonoporation activity was found to be 50% of its maximum level. Furthermore, significant sonoporation activity was observed at pressure levels below the threshold for inertial cavitation of Optison. Above 2.4 MPa, a significant drop in sonoporation activity occurred, corresponding to pressures where >95% of the Optison was collapsing. These results demonstrate that sonoporation is not directly a result of inertial cavitation of the UCA, rather that the effect is related to linear and/or nonlinear oscillation of the UCA occurring at pressure levels below the inertial cavitation threshold.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultrasound contrast agents are valuable in diagnostic ultrasound imaging, and they increasingly show potential for drug delivery. This review focuses on the acoustic behavior of flexible-coated microbubbles and rigid-coated microcapsules and their contribution to enhanced drug delivery. Phenomena relevant to drug delivery, such as non-spherical oscillations, shear stress, microstreaming, and jetting will be reviewed from both a theoretical and experimental perspective. Further, the two systems for drug delivery, co-administration and the microbubble as drug carrier system, are reviewed in relation to the microbubble behavior. Finally, future prospects are discussed that need to be addressed for ultrasound contrast agents to move from a pre-clinical tool into a clinical setting.
    Advanced drug delivery reviews 03/2014; · 11.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sonoporation has the potential to deliver extraneous molecules into a target tissue non- invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002–60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 s < Tex < 1 s, while the number of micrometer-scale pits, caused mainly by inertial cavitation bubbles such as C4F10 gas bubbles and vapor bubbles, increased exponentially with increasing Tex in the range 0.1 s < Tex < 10 s. The results of the present study suggest that cavitation-induced sonoporation can produce various pore sizes in membranes, enabling the delivery of external molecules of differing sizes into cells or tissues.
    Ultrasonics 01/2014; · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When a bubble oscillates in an acoustically driven pressure field, its oscillations result in an attractive force on micro-sized objects in the near field. At the same time, the objects are subject to a viscous drag force due to the streaming flow that is generated by the oscillating bubble. Based on these secondary effects, oscillating bubbles have recently been implemented in biological applications to control and manipulate micron-sized objects. These objects include live microorganisms, such as Caenorhabditis elegans and Daphnia (water flea), as well as cells and vesicles. Oscillating bubbles are also used in delivering drugs or genes inside human blood vessels. In this review paper, we explain the underlying physical mechanism behind oscillating bubbles and discuss some of their key applications in biology, with the focus on the manipulation of microorganisms and cells.
    Integrative and Comparative Biology 06/2014; · 3.02 Impact Factor


1 Download
Available from