Nitric oxide and iron metabolism in exercised rat with L-arginine supplementation.

School of Medical Technology, Jiangsu University, Jiangsu Province, Hong Kong, P R China.
Molecular and Cellular Biochemistry (Impact Factor: 2.33). 10/2003; 252(1-2):65-72. DOI: 10.1023/A:1025517216681
Source: PubMed

ABSTRACT The present study was designed to investigate whether L-arginine (Arg) supplementation in exercise affects nitric oxide (NO) synthesis in tissues and thus iron metabolism. Rats were assigned to one of four groups: EG (Exercise), SG (Sedentary), EAG (Exercise + Arg), and SAG (Sedentary + Arg). Both EG and EAG swam 2 h/day for 3 months. Both SAG and EAG received 3% Arg supplementation in their drinking water. The results showed that Arg supplementation in exercise (EAG) significantly increased nitrite and nitrate (NOx) concentration in the kidney and BMC, rather than in the liver, spleen and heart. Arg supplementation significantly increased both nonheme iron (NHI) and catalytic iron (CI) content in the kidney, to the extent that the ratio of CI/NHI or storage iron (SI)/NHI was not significantly affected, and significantly decreased NHI content and increased CI content in BMC, to the extent that SI content or SI/NHI was significantly decreased. These findings suggest that Arg supplementation in exercise, possibly through increasing NO synthesis, may change CI formation in the kidney and BMC, and affect iron storage in BMC rather than in the kidney.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the tolerance of the insulin-resistant diabetic heart to ischemic injury in the male Goto-Kakizaki (GK) rat, a model of type 2 diabetes. Changes in energy metabolism, nitric oxide (NO) pathway, and cardiac function were assessed in the presence of physiological substrates. Age-matched control Wistar (n = 19) and GK (n = 18) isolated rat hearts were perfused with 0.4 mM palmitate, 3% albumin, 11 mM glucose, 3 U/l insulin, 0.2 mM pyruvate, and 0.8 mM lactate for 24 min before switching to 1.2 mM palmitate (11 rats/group) during 32 min low-flow (0.5 ml·min(-1)·g wet wt(-1)) ischemia. Next, flow was restored with 0.4 mM palmitate buffer for 32 min. A subset of hearts from each group (n = 8 for control and n = 7 for GK groups) were freeze-clamped for determining baseline values after the initial perfusion of 24 min. ATP, phosphocreatine (PCr), and intracellular pH (pH(i)) were followed using (31)P magnetic resonance spectroscopy with simultaneous measurement of contractile function. The NO pathway was determined by nitric oxide synthase (NOS) isoform expression and total nitrate concentration (NOx) in hearts. We found that coronary flow was 26% lower (P < 0.05) during baseline conditions and 61% lower (P < 0.05) during reperfusion in GK vs. control rat hearts. Rate pressure product was lower during reperfusion in GK vs. control rat hearts (P < 0.05). ATP, PCr, and pH(i) during ischemia-reperfusion were similar in both groups. Endothelial NOS expression was increased in GK rat hearts during baseline conditions (P < 0.05). NOx was increased during baseline conditions (P < 0.05) and after reperfusion (P < 0.05) in GK rat hearts. We report increased susceptibility of type 2 diabetic GK rat heart to ischemic injury that is not associated with impaired energy metabolism. Reduced coronary flow, upregulation of eNOS expression, and increased total NOx levels confirm NO pathway modifications in this model, presumably related to increased oxidative stress. Modifications in the NO pathway may play a major role in ischemia-reperfusion injury of the type 2 diabetic GK rat heart.
    AJP Heart and Circulatory Physiology 11/2010; 299(5):H1679-86. · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the influence of the intake of L-arginine alone and of L-arginine with vitamin C on mineral concentration in rats fed with a high-fat diet, and to assess the lipid glucose, insulin, and total antioxidant status (TAS) and tumor necrosis factor (TNF) alpha serum levels that result. Wistar rats were assigned to groups fed with either a standard control diet (C), a diet high in fat (FD), a diet high in fat with L-arginine, or a diet high in fat with L-arginine and vitamin C. After 6 weeks, the length and weight of the rats were measured, and the animals were euthanized. The liver, spleen, kidneys, pancreas, heart, and gonads were collected, as were blood samples. The total serum cholesterol, triglyceride, fasting glucose, insulin, TAS, and TNF alpha levels were measured. The tissue calcium, magnesium, iron, zinc, and copper concentrations were determined. It was found that L-arginine supplementation diminished the effect of the modified diet on the concentration of iron in the liver and spleen and of copper in heart. At the same time, it was observed that L-arginine supplementation reduced the effect of the high-fat diet on insulin, TNF alpha, and TAS. The combination of L-arginine and vitamin C produced a similar effect on the mineral levels in the tissues as did L-arginine used alone. Moreover, positive correlations between serum insulin and iron in the liver, between TNF alpha and iron in the liver, and between TNF alpha and copper in the heart were observed. The level of TAS in serum was inversely correlated with the copper level in the heart and the iron level in the liver. We concluded that the beneficial influence of L-arginine on insulin, TAS, and TNF alpha serum level is associated with changes in the iron and copper status in rats fed with a high-fat diet. No synergistic effect of L-arginine and vitamin C in the biochemical parameters or in the mineral status in rats fed with the modified diet was observed.
    Biological trace element research 12/2013; · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.
    PLoS ONE 01/2014; 9(4):e94448. · 3.53 Impact Factor