Article

The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state.

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
Cell (Impact Factor: 33.12). 10/2003; 115(2):229-40.
Source: PubMed

ABSTRACT Molecular chaperones assist protein folding by facilitating their "forward" folding and preventing aggregation. However, once aggregates have formed, these chaperones cannot facilitate protein disaggregation. Bacterial ClpB and its eukaryotic homolog Hsp104 are essential proteins of the heat-shock response, which have the remarkable capacity to rescue stress-damaged proteins from an aggregated state. We have determined the structure of Thermus thermophilus ClpB (TClpB) using a combination of X-ray crystallography and cryo-electron microscopy (cryo-EM). Our single-particle reconstruction shows that TClpB forms a two-tiered hexameric ring. The ClpB/Hsp104-linker consists of an 85 A long and mobile coiled coil that is located on the outside of the hexamer. Our mutagenesis and biochemical data show that both the relative position and motion of this coiled coil are critical for chaperone function. Taken together, we propose a mechanism by which an ATP-driven conformational change is coupled to a large coiled-coil motion, which is indispensable for protein disaggregation.

0 Followers
 · 
70 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A subgroup of the AAA+ proteins that reside in the endoplasmic reticulum and the nuclear envelope including human torsinA, a protein mutated in hereditary dystonia, is called the torsin family of AAA+ proteins. A multiple-sequence alignment of this family with Hsp100 proteins of known structure reveals a conserved cysteine in the C-terminus of torsin proteins within the Sensor-II motif. A structural model predicts this cysteine to be a part of an intramolecular disulfide bond, suggesting that it may function as a redox sensor to regulate ATPase activity. In vitro experiments with OOC-5, a torsinA homolog from Caenorhabditis elegans, demonstrate that redox changes that reduce this disulfide bond affect the binding of ATP and ADP and cause an attendant local conformational change detected by limited proteolysis. Transgenic worms expressing an ooc-5 gene with cysteine-to-serine mutations that disrupt the disulfide bond have a very low embryo hatch rate compared with wild-type controls, indicating these two cysteines are essential for OOC-5 function. We propose that the Sensor-II in torsin family proteins is a redox-regulated sensor. This regulatory mechanism may be central to the function of OOC-5 and human torsinA.
    Molecular biology of the cell 07/2008; 19(8):3599-612. DOI:10.1091/mbc.E08-01-0015 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Casein lytic proteinase/heat shock protein 100 (Clp/Hsp100) proteins are chaperones that act to remodel/disassemble protein complexes and/or aggregates using the energy of ATP. In plants, one of the best-studied proteins from this family is cytosolic ClpB1 (At1g74310), better known in Arabidopsis as AtHsp101, which is a heat shock protein required for acclimation to high temperatures. Three other ClpB homologues have been identified in the Arabidopsis genome (ClpB2, ClpB3 and ClpB4; At4g14670, At5g15450 and At2g25140). To define further the roles of these chaperones in plants we investigated their intracellular localization, evolutionary relationships, patterns of expression and the phenotypes of corresponding T-DNA insertion mutants. We first found that ClpB2 was misannotated; there is no functional ClpB/Hsp100 gene at this locus. By fusing the putative transit peptides of ClpB3 and ClpB4 with GFP, we showed that these proteins are targeted to the chloroplast and mitochondrion, respectively, and we therefore designated them as ClpB-p and ClpB-m. Phylogenetic analysis supports two major lineages of ClpB proteins in plants, an 'eukaryotic', cytosol/nuclear-localized group containing AtHsp101, and an organelle-localized lineage, containing both ClpB-p and ClpB-m. Although AtHsp101, ClpB-p and ClpB-m transcripts all accumulate dramatically at high temperatures, the T-DNA insertion mutants of ClpB-p and ClpB-m show no evidence of seedling heat stress phenotypes similar to those observed in AtHsp101 mutants. Strikingly, ClpB-p knockouts were seedling lethals, failing to accumulate chlorophyll or properly develop chloroplasts. Thus, in plants, the function of ClpB/Hsp100 proteins is not restricted to heat stress, but a specific member of the family provides housekeeping functions that are essential to chloroplast development.
    The Plant Journal 02/2007; 49(1):115-27. DOI:10.1111/j.1365-313X.2006.02940.x · 6.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The AAA+ protein ClpC is not only involved in the removal of misfolded and aggregated proteins but also controls, through regulated proteolysis, key steps of several developmental processes in the Gram-positive bacterium Bacillus subtilis. In contrast to other AAA+ proteins, ClpC is unable to mediate these processes without an adaptor protein like MecA. Here, we demonstrate that the general activation of ClpC is based upon the ability of MecA to participate in the assembly of an active and substrate-recognizing higher oligomer consisting of ClpC and the adaptor protein, which is a prerequisite for all activities of this AAA+ protein. Using hybrid proteins of ClpA and ClpC, we identified the N-terminal and the Linker domain of the first AAA+ domain of ClpC as the essential MecA interaction sites. This new adaptor-mediated mechanism adds another layer of control to the regulation of the biological activity of AAA+ proteins.
    The EMBO Journal 05/2006; 25(7):1481-91. DOI:10.1038/sj.emboj.7601042 · 10.75 Impact Factor