The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state.

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
Cell (Impact Factor: 33.12). 10/2003; 115(2):229-40.
Source: PubMed

ABSTRACT Molecular chaperones assist protein folding by facilitating their "forward" folding and preventing aggregation. However, once aggregates have formed, these chaperones cannot facilitate protein disaggregation. Bacterial ClpB and its eukaryotic homolog Hsp104 are essential proteins of the heat-shock response, which have the remarkable capacity to rescue stress-damaged proteins from an aggregated state. We have determined the structure of Thermus thermophilus ClpB (TClpB) using a combination of X-ray crystallography and cryo-electron microscopy (cryo-EM). Our single-particle reconstruction shows that TClpB forms a two-tiered hexameric ring. The ClpB/Hsp104-linker consists of an 85 A long and mobile coiled coil that is located on the outside of the hexamer. Our mutagenesis and biochemical data show that both the relative position and motion of this coiled coil are critical for chaperone function. Taken together, we propose a mechanism by which an ATP-driven conformational change is coupled to a large coiled-coil motion, which is indispensable for protein disaggregation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: E. coli ClpB is a molecular chaperone that belongs to the Clp/Hsp100 family of AAA+ proteins. ClpB is able to form a hexameric ring structure to catalyze protein disaggregation with the assistance of the DnaK chaperone system. Our knowledge of the mechanism of how ClpB recognizes its substrates is still limited. In this work, we have quantitatively investigated ClpB binding to a number of unstructured polypeptides using steady-state anisotropy titrations. To precisely determine the binding affinity for the interaction between ClpB hexamers and polypeptide substrates the titration data were subjected to global non-linear least squares analysis incorporating the dynamic equilibrium of ClpB assembly. Our results show that ClpB hexamers bind tightly to unstructured polypeptides with binding affinities in the range of ˜3 – 16 nM. ClpB exhibits a modest preference of binding to Peptide B1 with a binding affinity of (1.7 ± 0.2) nM. Interestingly, we found that ClpB binds to an unstructured polypeptide substrate of 40 and 50 amino acids containing the SsrA sequence at the C-terminus with an affinity of (12 ± 3) nM and (4 ± 2) nM, respectively. Whereas, ClpB binds the 11-amino acid SsrA sequence with an affinity of (140 ± 20) nM, which is significantly weaker than other polypeptide substrates that we tested here. We hypothesize that ClpB, like ClpA, requires substrates with a minimum length for optimal binding. Finally, we present evidence showing that multiple ClpB hexamers are involved in binding to polypeptides ≥ 152 amino acids. © Proteins 2014;. © 2014 Wiley Periodicals, Inc.
    Proteins Structure Function and Bioinformatics 01/2015; 83(1). DOI:10.1002/prot.24710 · 2.92 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by the chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone–substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone–substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone–substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone–substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone–substrate complexes at atomic resolution.
    Progress in Nuclear Magnetic Resonance Spectroscopy 03/2015; DOI:10.1016/j.pnmrs.2015.02.004 · 8.71 Impact Factor