Article

Vitamin K, circulating cytokines, and bone mineral density in older men and women.

US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
American Journal of Clinical Nutrition (Impact Factor: 6.92). 09/2008; 88(2):356-63.
Source: PubMed

ABSTRACT Vitamin K modulates cytokines involved in bone turnover, including interleukin-6 (IL-6) and osteoprotegerin in vitro.
The objective of this study was to assess 1) associations between measures of vitamin K status [plasma phylloquinone and serum percentage of undercarboxylated osteocalcin (%ucOC)] and IL-6, osteoprotegerin, and C-reactive protein (CRP) concentrations and 2) the effect of daily 500 mug phylloquinone supplementation for 3 y on cytokine concentrations.
Concentrations of IL-6, osteoprotegerin, and CRP and bone mineral density (BMD) were measured at baseline and after 3 y of follow-up in 379 healthy men and women (60-81 y; 58.5% women) participating in a randomized trial that studied the effect of vitamin K supplementation on bone loss.
Cross-sectionally, plasma phylloquinone was inversely associated with IL-6 and CRP, whereas serum %ucOC was inversely associated with IL-6. Osteoprotegerin was associated positively with plasma phylloquinone and inversely with %ucOC. No differences were observed in the 3-y change in IL-6, osteoprotegerin, and CRP concentrations between participants who received phylloquinone supplementation and those who did not. Overall, no association was observed between the 3-y changes in circulating cytokines and BMD.
Poor vitamin K status was associated with high concentrations of cytokines involved in bone turnover, but vitamin K supplementation did not confer a decrease in cytokine concentrations. The healthy status of this cohort may explain a lack of effect of vitamin K supplementation on cytokine concentrations. This trial was registered with www.clinicaltrials.gov as NCT00183001.

Download full-text

Full-text

Available from: Jose M Ordovas, Feb 27, 2014
0 Followers
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronary artery calcification (CAC) is an independent predictor of cardiovascular disease. A preventive role for vitamin K in CAC progression has been proposed on the basis of the properties of matrix Gla protein (MGP) as a vitamin K-dependent calcification inhibitor. The objective was to determine the effect of phylloquinone (vitamin K1) supplementation on CAC progression in older men and women. CAC was measured at baseline and after 3 y of follow-up in 388 healthy men and postmenopausal women; 200 received a multivitamin with 500 microg phylloquinone/d (treatment), and 188 received a multivitamin alone (control). In an intention-to-treat analysis, there was no difference in CAC progression between the phylloquinone group and the control group; the mean (+/-SEM) changes in Agatston scores were 27 +/- 6 and 37 +/- 7, respectively. In a subgroup analysis of participants who were > or =85% adherent to supplementation (n = 367), there was less CAC progression in the phylloquinone group than in the control group (P = 0.03). Of those with preexisting CAC (Agatston score > 10), those who received phylloquinone supplements had 6% less progression than did those who received the multivitamin alone (P = 0.04). Phylloquinone-associated decreases in CAC progression were independent of changes in serum MGP. MGP carboxylation status was not determined. Phylloquinone supplementation slows the progression of CAC in healthy older adults with preexisting CAC, independent of its effect on total MGP concentrations. Because our data are hypothesis-generating, further studies are warranted to clarify this mechanism. This trial was registered at clinicaltrials.gov as NCT00183001.
    American Journal of Clinical Nutrition 05/2009; 89(6):1799-807. DOI:10.3945/ajcn.2008.27338 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phylloquinone (vitamin K(1)) is a lipophilic compound present in plasma at low concentrations, which presents technical challenges for determining its bioavailability or metabolic fate using stable isotopes. We developed a method to simultaneously measure unlabeled and deuterium-labeled phylloquinone concentrations in plasma specimens using high-performance liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization (LC-APCI/MS). Phylloquinone was extracted from plasma using hexane, further purified by solid-phase extraction, and then quantified using high-performance liquid chromatography with an APCI/MS as a detector. Plotting the expected versus the measured amount of serial dilutions of either unlabeled or labeled phylloquinone gave correlation coefficients (R) of 0.999 for both compounds. The minimum detectable concentrations of unlabeled and labeled phylloquinone were 0.05 and 0.08 pmol/injection, respectively. Pooled plasma samples spiked with between 0.5 and 32 nmol phylloquinone/L gave average recoveries of 96.7% with 5.4% relative standard deviation (RSD) for unlabeled phylloquinone and 96.2% with 6.6% RSD for labeled phylloquinone. Plasma phylloquinone concentrations determined by LC-fluorescence and LC-APCI/MS methods from healthy subjects (n = 17) were not statistically different (P = 0.13). The LC-APCI/MS method is a sensitive technique for simultaneous determination of both unlabeled and labeled phylloquinone and can be applied to bioavailability studies.
    Analytical Chemistry 08/2009; 81(13):5421-5. DOI:10.1021/ac900732w · 5.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The skeletal protein osteocalcin is gamma-carboxylated by vitamin K. High serum uncarboxylated osteocalcin reflects low vitamin K status. In vitro and animal studies indicate that high uncarboxylated osteocalcin is associated with reduced insulin resistance. However, associations between osteocalcin and measures of insulin resistance in humans are less clear. Our aim was to examine cross-sectional and longitudinal associations between circulating forms of osteocalcin (total, uncarboxylated, and carboxylated) and insulin resistance in older men and women. Cross-sectional associations between serum measures of total osteocalcin, carboxylated osteocalcin, and uncarboxylated osteocalcin and insulin resistance were examined in 348 nondiabetic men and women (mean age: 68 y; 58% female) by using the homeostasis model assessment of insulin resistance (HOMA-IR). Associations between each form of osteocalcin at baseline and 3-y change in HOMA-IR were examined in 162 adults (mean age: 69 y; 63% female) who did not receive vitamin K supplementation. Lower circulating uncarboxylated osteocalcin was not associated with higher HOMA-IR at baseline or at 3-y follow-up. Those in the lowest tertiles of total osteocalcin and carboxylated osteocalcin at baseline had higher baseline HOMA-IR (P = 0.006 and P = 0.02, respectively). The concentration of carboxylated osteocalcin at baseline was inversely associated with a 3-y change in HOMA-IR (P = 0.002). In older adults, circulating uncarboxylated osteocalcin was not associated with insulin resistance. In contrast, elevated carboxylated osteocalcin and total osteocalcin were associated with lower insulin resistance, which supports a potential link between skeletal physiology and insulin resistance in humans. The role of vitamin K status in this association remains unclear and merits further investigation. This trial is registered at clinicaltrials.gov as NCT00183001.
    American Journal of Clinical Nutrition 09/2009; 90(5):1230-5. DOI:10.3945/ajcn.2009.28151 · 6.92 Impact Factor