Water photodissociation in free ice nanoparticles at 243 nm and 193 nm.

J. Heyrovský Institute of Physical Chemistry, v.v.i. Academy of Sciences of the Czech Republic, Prague 8, Czech Republic.
Physical Chemistry Chemical Physics (Impact Factor: 4.2). 09/2008; 10(32):4835-42. DOI: 10.1039/b806865h
Source: PubMed

ABSTRACT The photolysis of (H(2)O)(n) nanoparticles of various mean sizes between 85 and 670 has been studied in a molecular beam experiment. At the dissociation wavelength 243 nm (5.10 eV), a two-photon absorption leads to H-atom production. The measured kinetic energy distributions of H-fragments exhibit a peak of slow fragments below 0.4 eV with maximum at approximately 0.05 eV, and a tail of faster fragments extending to 1.5 eV. The dependence on the cluster size suggests that the former fragments originate from the photodissociation of an H(2)O molecule in the cluster interior leading to the H-fragment caging and eventually generation of a hydronium H(3)O molecule. The photolysis of surface molecules yields the faster fragments. At 193 nm (6.42 eV) a single photon process leads to a small signal from molecules directly photolyzed on the cluster surface. The two photon processes at this wavelength may lead to cluster ionization competing with its photodissociation, as suggested by the lack of H-fragment signal increase. The experimental findings are complemented by theoretical calculations.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We show that the irradiation of UV light (10-11 eV) onto an ice film produces metastable hydronium (H(3)O(+)) ions in the ice at low temperatures (53-140 K). Evidence of the presence of metastable hydronium ions was obtained by experiments involving adsorption of methylamine onto UV-irradiated ice films and hydrogen-deuterium (H∕D) isotopic exchange reaction. The methylamine adsorption experiments showed that photogenerated H(3)O(+) species transferred a proton to the methylamine arriving at the ice surface, thus producing the methyl ammonium ion, which was detected by low energy sputtering method. The H(3)O(+) species induced the H∕D exchange of water, which was monitored through the detection of water isotopomers on the surface by using the Cs(+) reactive ion scattering method. Thermal and temporal stabilities of H(3)O(+) and its proton migration activity were examined. The lifetime of the hydronium ions in the amorphized ice was greater than 1 h at ∼53 K and decreased to ∼5 min at 140 K. Interestingly, a small portion of hydronium ions survived for an extraordinarily long time in the ice, even at 140 K. The average migration distance of protons released from H(3)O(+) in the ice was estimated to be about two water molecules at ∼54 K and about six molecules at 100 K. These results indicate that UV-generated hydronium ions can be efficiently stabilized in low-temperature ice. Such metastable hydronium ions may play a significant role in the acid-base chemistry of ice particles in interstellar clouds.
    The Journal of Chemical Physics 11/2012; 137(20):204704. DOI:10.1063/1.4768418 · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: THIS REVIEW SUMMARIZES SOME RECENT EXPERIMENTS WITH ICE NANOPARTICLES (LARGE WATER CLUSTERS) IN MOLECULAR BEAMS AND OUTLINES THEIR ATMOSPHERIC RELEVANCE: (1) Investigation of mixed water-nitric acid particles by means of the electron ionization and sodium doping combined with photoionization revealed the prominent role of HNO3 molecule as the condensation nuclei. (2) The uptake of atmospheric molecules by water ice nanoparticles has been studied, and the pickup cross sections for some molecules exceed significantly the geometrical sizes of the ice nanoparticles. (3) Photodissociation of hydrogen halides on water ice particles has been shown to proceed via excitation of acidically dissociated ion pair and subsequent biradical generation and H3O dissociation. The photodissociation of CF2Cl2 molecules in clusters is also mentioned. Possible atmospheric consequences of all these results are briefly discussed.
    Frontiers in Chemistry 02/2014; 2:4. DOI:10.3389/fchem.2014.00004
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photochemistry of the water dimer irradiated by UV light is studied by means of the complete active space perturbation theory∕∕complete active space self-consistent field (CASPT2//CASSCF) method and accurate computational approaches like as minimum energy paths. Both electronic structure computations and ab initio molecular dynamics simulations are carried out. The results obtained show small shifts relative to a single water molecule on the vertical excitation energies of the dimer due to the hydrogen bond placed between the water donor (W(D)) and the water acceptor (W(A)). A red-shift and a blue-shift are predicted for the W(D) and W(A), respectively, supporting previous theoretical and experimental results. The photoinduced chemistry of the water dimer is described as a process occurring between two single water molecules in which the effect of the hydrogen bond plays a minor role. Thus, the photoinduced decay routes correspond to two photodissociation processes, one for each water molecule. The proposed mechanism for the decay channels of the lowest-lying excited states of the system is established as the photochemical production of a hydrogen-bonded H(2)O[ellipsis (horizontal)]HO species plus a hydrogen H atom.
    The Journal of Chemical Physics 12/2012; 137(24):244309. DOI:10.1063/1.4772187 · 3.12 Impact Factor