Article

Deficiency of TNFalpha converting enzyme (TACE/ADAM17) causes a lean, hypermetabolic phenotype in mice.

Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington 98195, USA.
Endocrinology (Impact Factor: 4.64). 09/2008; 149(12):6053-64. DOI: 10.1210/en.2008-0775
Source: PubMed

ABSTRACT Energy homeostasis involves central nervous system integration of afferent inputs that coordinately regulate food intake and energy expenditure. Here, we report that adult homozygous TNFalpha converting enzyme (TACE)-deficient mice exhibit one of the most dramatic examples of hypermetabolism yet reported in a rodent system. Because this effect is not matched by increased food intake, mice lacking TACE exhibit a lean phenotype. In the hypothalamus of these mice, neurons in the arcuate nucleus exhibit intact responses to reduced fat mass and low circulating leptin levels, suggesting that defects in other components of the energy homeostasis system explain the phenotype of Tace(DeltaZn/DeltaZn) mice. Elevated levels of uncoupling protein-1 in brown adipose tissue from Tace(DeltaZn/DeltaZn) mice when compared with weight-matched controls suggest that deficient TACE activity is linked to increased sympathetic outflow. These findings collectively identify a novel and potentially important role for TACE in energy homeostasis.

Full-text

Available from: Richard Wayne Gelling, Sep 23, 2014
0 Followers
 · 
222 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lean body weight phenotype of hepatic lipase (HL)-deficient mice (hl(-/-)) suggests that HL is required for normal weight gain, but the underlying mechanisms are unknown. HL plays a unique role in lipoprotein metabolism performing bridging as well as catalytic functions, either of which could participate in energy homeostasis. To determine if both the catalytic and bridging functions or the catalytic function alone are required for the effect of HL on body weight, we studied (hl(-/-)) mice that transgenically express physiologic levels of human (h)HL (with catalytic and bridging functions) or a catalytically-inactive (ci)HL variant (with bridging function only) in which the catalytic Serine 145 was mutated to Alanine. As expected, HL activity in postheparin plasma was restored to physiologic levels only in hHL-transgenic mice (hl(-/-)hHL). During high-fat diet feeding, hHL-transgenic mice exhibited increased body weight gain and body adiposity relative to hl(-/-)ciHL mice. A similar, albeit less robust effect was observed in female hHL-transgenic relative to hl(-/-)ciHL mice. To delineate the basis for this effect, we determined cumulative food intake and measured energy expenditure using calorimetry. Interestingly, in both genders, food intake was 5-10% higher in hl(-/-)hHL mice relative to hl(-/-)ciHL controls. Similarly, energy expenditure was ~10% lower in HL-transgenic mice after adjusting for differences in total body weight. Our results demonstrate that (1) the catalytic function of HL is required to rescue the lean body weight phenotype of hl(-/-) mice; (2) this effect involves complementary changes in both sides of the energy balance equation; and (3) the bridging function alone is insufficient to rescue the lean phenotype of hl(-/-)ciHL mice. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and the Physiological Society.
    04/2015; 3(4). DOI:10.14814/phy2.12365
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tissue inhibitor of metalloproteinase (TIMP)3, a stromal protein that restrains the activity of proteases and receptors, is reduced in inflammatory metabolic disorders such as type 2 diabetes mellitus (T2DM) and atherosclerosis. We overexpressed Timp3 in mouse macrophages (MacT3) to analyze its potential antidiabetic and antiatherosclerotic effects. Transgenic mice with myeloid cells targeting overexpression of TIMP3 were generated and fed a high-fat diet for 20 weeks. Physical and metabolic phenotypes were determined. Inflammatory markers, lipid accumulation, and insulin sensitivity were measured in white adipose tissue (WAT), liver, and skeletal muscle. In a model of insulin resistance, MacT3 mice were more glucose tolerant and insulin sensitive than wild-type mice in both in vitro and in vivo tests. Molecular and biochemical analyses revealed that increased expression of TIMP3 restrained metabolic inflammation and stress-related pathways, including Jun NH2-terminal kinase and p38 kinase activation, in WAT and liver. TIMP3 overexpression in macrophages resulted in reduced activation of oxidative stress signals related to lipid peroxidation, protein carbonylation, and nitration in WAT and liver. Our data show that macrophage-specific overexpression of TIMP3 protects from metabolic inflammation and related metabolic disorders such as insulin resistance, glucose intolerance, and nonalcoholic steatohepatitis.
    Diabetes 02/2012; 61(2):454-62. DOI:10.2337/db11-0613 · 8.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to identify quantitative trait loci (QTLs) contributing to obesity, energy expenditure, and atherosclerosis. Parental strains C57BL/6 and A/J together with a panel of 21 CSSs derived from these progenitors were subjected to chronic feeding of rodent chow and atherosclerotic (females) or diabetogenic (males) test diets, and evaluated for a variety of metabolic phenotypes including several traits unique to this report, namely fat pad weights, energy balance, and atherosclerosis. A total of 297 QTLs across 35 traits were discovered, two of which provided significant protection from atherosclerosis, and several dozen QTLs modulated body weight, body composition, and circulating lipid levels in females and males. While several QTLs confirmed previous reports, most QTLs were novel. Finally, we applied the CSS quantitative genetic approach to energy balance, and identified three novel QTLs controlling energy expenditure and one QTL modulating food intake. Overall, we identified many new QTLs and phenotyped several novel traits in this mouse model of diet-induced metabolic diseases.
    Mammalian Genome 07/2014; 25(11-12). DOI:10.1007/s00335-014-9530-2 · 2.88 Impact Factor