Article

Zyflamend® reduces LTB4 formation and prevents oral carcinogenesis in a 7,12-dimethylbenz[α]anthracene (DMBA)-induced hamster cheek pouch model

Department of Experimental Therapeutics The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
Carcinogenesis (Impact Factor: 5.27). 09/2008; 29(11):2182-9. DOI: 10.1093/carcin/bgn181
Source: PubMed

ABSTRACT Aberrant arachidonic acid metabolism, especially altered cyclooxygenase and 5-lipoxygenase (LOX) activities, has been associated with chronic inflammation as well as carcinogenesis in human oral cavity tissues. Here, we examined the effect of Zyflamend, a product containing 10 concentrated herbal extracts, on development of 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced inflammation and oral squamous cell carcinoma (SCC). A hamster cheek pouch model was used in which 0.5% DMBA was applied topically onto the left cheek pouch of male Syrian golden hamsters either three times per week for 3 weeks (short term) or 6 weeks (long term). Zyflamend was then applied topically at one of three different doses (25, 50 and 100 microl) onto the left cheek pouch three times for 1 week (short-term study) or chronically for 18 weeks. Zyflamend significantly reduced infiltration of inflammatory cells, incidence of hyperplasia and dysplastic lesions, bromodeoxyuridine-labeling index as well as number of SCC in a concentration-dependent manner. Application of Zyflamend (100 microl) reduced formation of leukotriene B(4) (LTB(4)) by 50% compared with DMBA-treated tissues. The reduction of LTB(4) was concentration dependent. The effect of Zyflamend on inhibition of LTB(4) formation was further confirmed with in vitro cell-based assay. Adding LTB(4) to RBL-1 cells, a rat leukemia cell line expressing high levels of 5-LOX and LTA(4) hydrolase, partially blocked antiproliferative effect of Zyflamend. This study demonstrates that Zyflamend inhibited LTB(4) formation and modulated adverse histopathological changes in the DMBA-induced hamster cheek pouch model. The study suggests that Zyflamend might prevent oral carcinogenesis at the post-initiation stage.

0 Followers
 · 
141 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In addition to genetic changes, epigenetic aberrations also play important roles in radiation- and chemical-induced disorders and carcinogenesis. The present study investigated whether epigenetic therapy with a histone deacetylase (HDAC) inhibitor has dual benefits for radiation-induced oral mucositis and chemical-induced oral carcinogenesis, which should be treated at the same time. The HDAC inhibitor phenylbutyrate was first tested to determine if it influences DNA damage repair and survival in irradiated normal cells in vitro by investigating the patterns and dynamics of phospho-gammaH2AX foci, Rad51 foci and phospho-gammaH2AX/Rad51 colocalization and using the comet and clonogenic assays. Oral mucositis or carcinogenesis was induced in hamsters using radiation or 7,12-dimethylbenz[a]anthracene (DMBA) irritation to the cheek pouch. The ability of phenylbutyrate formed in proper carriers to prevent radiation-induced oral mucositis and inhibit chemical-induced oral carcinogenesis was assessed. The treated or untreated irradiated or DMBA-irritated oral tissues or mucosal epithelia were subjected to the studies of histology, immunohistochemistry, gene expression, comet assay, HDAC activity or oxidative stress. We found that phenylbutyrate promoted DNA repair and survival in normal cells after radiation. Compared with blank or vehicle-treated hamsters, the irradiated mucosa treated with phenylbutyrate had significantly lower oxidative stress and tumor necrosis factor-alpha expression and less severe oral mucositis of a shorter duration. A reduction of the oral tumor incidence, burden and progression by phenylbutyrate correlated with the suppression of oncomiRs and Rad51 overexpression, the upregulation of differentiation markers and the decrease of intracellular HDAC activity and oxidative stress during DMBA-induced oral carcinogenesis. Thus, epigenetic therapy using the HDAC inhibitor as an adjuvant to radiotherapy for chemical-induced oral cancer may provide a promising strategy combining the prevention of radiation-induced oral mucositis and the inhibition of oral carcinogenesis.
    Carcinogenesis 05/2009; 30(8):1387-97. DOI:10.1093/carcin/bgp079 · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammation has long been associated with neoplastic progression. Our group had recently shown that the addition of a large number of apoptotic tumor cells to the tumor microenvironment induces a potent acute inflammatory reaction capable of promoting melanoma growth; however, primarily necrotizing cells do not cause such a reaction. Here, we show that potent inflammatory agents, such as lipopolysaccharide (LPS) and carrageenan, also promote growth of subtumorigenic doses of melanoma cells, having no effect on melanoma proliferation in vitro. Inhibition of 5-lipoxygenase (5-LOX) seems to have a pivotal role in this model because caffeic acid and MK886, a FLAP (5-LOX-activating protein) inhibitor, partially hindered tumor growth induced by apoptotic cells or LPS. Other enzymes of the arachidonic acid pathway, cyclooxygenase-1 and cyclooxygenase-2, seem to have no participation in this tumor promoter effect, as the inhibitor of both enzymes (indomethacin) did not alter melanoma growth. Leukotriene B4 (LTB4), the main product of the 5-LOX pathway, was able to induce growth of subtumorigenic inocula of melanoma cells, and a LTB4 receptor antagonist inhibited acute inflammation-associated tumor growth. Addition to the tumor inflammatory microenvironment of eicosapentaenoic acid, an omega3-polyunsaturated fatty acid with anti-inflammatory properties, or leukotriene B5, an eicosapentaenoic acid-derived leukotriene, significantly inhibited tumor development. These results give new insights to the mechanisms through which inflammation may contribute to tumor progression and suggest that LOX has an important role in tumor progression associated with an inflammatory state in the presence of apoptosis, which may be a consideration for apoptosis-inducing treatments, such as chemotherapy and radiotherapy.
    Molecular Cancer Research 10/2009; 7(9):1417-24. DOI:10.1158/1541-7786.MCR-09-0038 · 4.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess expression pattern and subcellular compartmentalization of 5-lipoxygenase in cutaneous, UV radiation-induced, and oral squamous cell carcinomas (SCCs) in cats and determine the effects of cyclooxygenase or 5-lipoxygenase inhibition on proliferation or apoptosis in a feline oral squamous cell carcinoma (SCCF1) cell line. 60 archived paraffin-embedded samples of SCCs from 60 cats and SCCF1 cells. Retrospective immunohistochemical analysis of the archived samples of SCCs (20 cutaneous, 20 UV radiation-induced, and 20 oral tumors) was performed. Cell culture proliferation assays involving SCCF1 cells were performed, and tepoxalin-induced apoptosis and signaling were examined via western blotting and annexin V staining. Immunohistochemically, staining for 5-lipoxygenase was most frequently of greatest intensity in oral SCCs, whereas staining of cutaneous and UV radiation-induced lesions had less consistent 5-lipoxygenase expression. Exposure of SCCF1 cells to the 5-lipoxygenase inhibitor tepoxalin resulted in apoptosis; the effect appeared to be mediated via alteration of cell signaling rather than via suppression of lipid mediators that are typically produced as a result of 5-lipoxygenase activity. In cats, expression of 5-lipoxygenase in SCCs appeared to differ depending on tumor location. The influence of tepoxalin-induced 5-lipoxygenase inhibition on a 5-lipoxygenase-expressing cell line coupled with the notable expression of 5-lipoxygenase in oral SCCs suggested that 5-lipoxygenase inhibition may have therapeutic benefits in affected cats. Although the safety of tepoxalin in cats has yet to be investigated, 5-lipoxygenase inhibitors should be evaluated for use as a potential treatment for SCCs in that species.
    American Journal of Veterinary Research 10/2011; 72(10):1369-77. DOI:10.2460/ajvr.72.10.1369 · 1.21 Impact Factor
Show more

Preview

Download
1 Download