Zyflamend(R) reduces LTB4 formation and prevents oral carcinogenesis in a 7,12-dimethylbenz[ ]anthracene (DMBA)-induced hamster cheek pouch model

Department of Experimental Therapeutics The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
Carcinogenesis (Impact Factor: 5.33). 09/2008; 29(11):2182-9. DOI: 10.1093/carcin/bgn181
Source: PubMed


Aberrant arachidonic acid metabolism, especially altered cyclooxygenase and 5-lipoxygenase (LOX) activities, has been associated with chronic inflammation as well as carcinogenesis in human oral cavity tissues. Here, we examined the effect of Zyflamend, a product containing 10 concentrated herbal extracts, on development of 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced inflammation and oral squamous cell carcinoma (SCC). A hamster cheek pouch model was used in which 0.5% DMBA was applied topically onto the left cheek pouch of male Syrian golden hamsters either three times per week for 3 weeks (short term) or 6 weeks (long term). Zyflamend was then applied topically at one of three different doses (25, 50 and 100 microl) onto the left cheek pouch three times for 1 week (short-term study) or chronically for 18 weeks. Zyflamend significantly reduced infiltration of inflammatory cells, incidence of hyperplasia and dysplastic lesions, bromodeoxyuridine-labeling index as well as number of SCC in a concentration-dependent manner. Application of Zyflamend (100 microl) reduced formation of leukotriene B(4) (LTB(4)) by 50% compared with DMBA-treated tissues. The reduction of LTB(4) was concentration dependent. The effect of Zyflamend on inhibition of LTB(4) formation was further confirmed with in vitro cell-based assay. Adding LTB(4) to RBL-1 cells, a rat leukemia cell line expressing high levels of 5-LOX and LTA(4) hydrolase, partially blocked antiproliferative effect of Zyflamend. This study demonstrates that Zyflamend inhibited LTB(4) formation and modulated adverse histopathological changes in the DMBA-induced hamster cheek pouch model. The study suggests that Zyflamend might prevent oral carcinogenesis at the post-initiation stage.

31 Reads
  • Source
    • "Zyflamend consistently enhanced mRNA and protein levels of p21 (including the nuclear fraction) in dose- and time-dependent manners and these effects were recapitulated by the general HDAC inhibitor TSA (positive control). Importantly, when Zyflamend was added to cells overexpressing p21, there was an added reduction in cell proliferation, further suggesting the effects of Zyflamend do not rely solely on p21 expression, but potentially involve multiple mechanisms [3,5,8,11,14]. HDACs have been shown to be important upstream regulators of p21 [54], and hyperacetylation of Sp1 binding sites in the proximal promoter is a key regulator of p21 expression [54]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Zyflamend, a mixture containing extracts of ten herbs, has shown promise in a variety of preclinical cancer models, including prostate cancer. The current experiments were designed to investigate the effects of Zyflamend on the expression of class I and II histone deacetylases, a family of enzymes known to be over expressed in a variety of cancers. CWR22Rv1 cells, a castrate-resistant prostate cancer cell line, were treated with Zyflamend and the expression of class I and II histone deacetylases, along with their downstream target the tumor suppressor gene p21, was investigated. Involvement of p21 was confirmed with siRNA knockdown and over expression experiments. Zyflamend down-regulated the expression of all class I and II histone deacetylases where Chinese goldthread and baikal skullcap (two of its components) appear to be primarily responsible for these results. In addition, Zyflamend up regulated the histone acetyl transferase complex CBP/p300, potentially contributing to the increase in histone 3 acetylation. Expression of the tumor suppressor gene p21, a known downstream target of histone deacetylases and CBP/p300, was increased by Zyflamend treatment and the effect on p21 was, in part, mediated through Erk1/2. Knockdown of p21 with siRNA technology attenuated Zyflamend-induced growth inhibition. Over expression of p21 inhibited cell growth and concomitant treatment with Zyflamend enhanced this effect. Our results suggest that the extracts of this polyherbal combination increase histone 3 acetylation, inhibit the expression of class I and class II histone deacetylases, increase the activation of CBP/p300 and inhibit cell proliferation, in part, by up regulating p21 expression.
    BMC Complementary and Alternative Medicine 02/2014; 14(1):68. DOI:10.1186/1472-6882-14-68 · 2.02 Impact Factor
  • Source
    • "The LTB 4 , derived from AA metabolism via 5-LO, has been associated with promotion of carcinogenesis (Ye et al, 2005; Yang et al, 2008), tumour progression (Freedman et al, 2007; Larre et al, 2008), and apoptosis resistance (Serhan et al, 2008). The BLT2 is a G-protein-coupled receptor that is expressed on the cell surface and interacts with specific ligands, such as LTB 4 and 12(S)-HETE. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Breast cancer is the most common malignancy in women. Although chemotherapeutic agents, such as paclitaxel, are effective treatments for the majority of breast cancer patients, recurrence is frequent and often leads to death. Thus, there is an urgent need to identify novel therapeutic targets that sensitise tumour cells to existing chemotherapy agents. Methods: The levels of leukotriene B4 receptor-2 (BLT2) in multidrug-resistant MCF-7/DOX cells were determined using quantitative PCR and FACS analysis. The potential role of BLT2 in the paclitaxel resistance of MCF-7/DOX cells was assessed using a pharmacological inhibitor and small interfering RNA knockdown, and the BLT2-associated resistance mechanism was assessed. Results: The expression levels of BLT2 were markedly upregulated in MCF-7/DOX cells. The inhibition of BLT2 by pre-treatment with LY255283 or siBLT2 knockdown significantly sensitised MCF-7/DOX cells to paclitaxel and induced significant levels of apoptotic death, suggesting that BLT2 mediates paclitaxel resistance. We also demonstrated that BLT2-induced paclitaxel resistance was associated with the upregulation of P-glycoprotein. Finally, co-treatment with a BLT2 inhibitor and paclitaxel markedly reduced tumour growth in an MCF-7/DOX in vivo model. Conclusion: Together, our results demonstrate that BLT2 is a novel therapeutic target that sensitises drug-resistant breast cancer cells to paclitaxel.
    British Journal of Cancer 06/2013; 109(2). DOI:10.1038/bjc.2013.333 · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In addition to genetic changes, epigenetic aberrations also play important roles in radiation- and chemical-induced disorders and carcinogenesis. The present study investigated whether epigenetic therapy with a histone deacetylase (HDAC) inhibitor has dual benefits for radiation-induced oral mucositis and chemical-induced oral carcinogenesis, which should be treated at the same time. The HDAC inhibitor phenylbutyrate was first tested to determine if it influences DNA damage repair and survival in irradiated normal cells in vitro by investigating the patterns and dynamics of phospho-gammaH2AX foci, Rad51 foci and phospho-gammaH2AX/Rad51 colocalization and using the comet and clonogenic assays. Oral mucositis or carcinogenesis was induced in hamsters using radiation or 7,12-dimethylbenz[a]anthracene (DMBA) irritation to the cheek pouch. The ability of phenylbutyrate formed in proper carriers to prevent radiation-induced oral mucositis and inhibit chemical-induced oral carcinogenesis was assessed. The treated or untreated irradiated or DMBA-irritated oral tissues or mucosal epithelia were subjected to the studies of histology, immunohistochemistry, gene expression, comet assay, HDAC activity or oxidative stress. We found that phenylbutyrate promoted DNA repair and survival in normal cells after radiation. Compared with blank or vehicle-treated hamsters, the irradiated mucosa treated with phenylbutyrate had significantly lower oxidative stress and tumor necrosis factor-alpha expression and less severe oral mucositis of a shorter duration. A reduction of the oral tumor incidence, burden and progression by phenylbutyrate correlated with the suppression of oncomiRs and Rad51 overexpression, the upregulation of differentiation markers and the decrease of intracellular HDAC activity and oxidative stress during DMBA-induced oral carcinogenesis. Thus, epigenetic therapy using the HDAC inhibitor as an adjuvant to radiotherapy for chemical-induced oral cancer may provide a promising strategy combining the prevention of radiation-induced oral mucositis and the inhibition of oral carcinogenesis.
    Carcinogenesis 05/2009; 30(8):1387-97. DOI:10.1093/carcin/bgp079 · 5.33 Impact Factor
Show more


31 Reads