Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells.

Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
Molecular biology of the cell (Impact Factor: 5.98). 09/2008; 19(10):4213-23. DOI: 10.1091/mbc.E08-03-0315
Source: PubMed

ABSTRACT Phosphoinositides (PtdInss) play key roles in cell polarization and motility. With a series of biosensors based on Förster resonance energy transfer, we examined the distribution and metabolism of PtdInss and diacylglycerol (DAG) in stochastically migrating Madin-Darby canine kidney (MDCK) cells. The concentrations of phosphatidylinositol (4,5)-bisphosphate, phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), phosphatidylinositol (3,4)-bisphosphate, and DAG were higher at the plasma membrane in the front of the cell than at the plasma membrane of the rear of the cell. The difference in the concentrations of PtdInss was estimated to be less than twofold between the front and rear of the migrating MDCK cells. To decode the spatial activities of PtdIns metabolic enzymes from the obtained concentration maps of PtdInss, we developed a one-dimensional reaction diffusion model of PtdIns metabolism. In this model, the activities of phosphatidylinositol monophosphate 5-kinase, phosphatidylinositol 3-kinase, phospholipase C, and PIP(3) 5-phosphatases were higher at the plasma membrane of the front than at the plasma membrane of the rear of the cell. This result suggests that, although the difference in the steady-state level of PtdInss is less than twofold, PtdInss were more rapidly turned over at the front than the rear of the migrating MDCK cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed genetically-encoded fluorescent sensors based on Förster Resonance Energy Transfer to monitor phosphatidic acid (PA) fluctuations in the plasma membrane using Spo20 as PA-binding motif. Basal PA levels and phospholipase D activity varied in different cell types. In addition, stimuli that activate PA phosphatases, leading to lower PA levels, increased lamellipodia and filopodia formation. Lower PA levels were observed in the leading edge than in the trailing edge of migrating HeLa cells. In MSC80 and OLN93 cells, which are stable cell lines derived from Schwann cells and oligodendrocytes, respectively, a higher ratio of diacylglycerol to PA levels was demonstrated in the membrane processes involved in myelination, compared to the cell body. We propose that the PA sensors reported here are valuable tools to unveil the role of PA in a variety of intracellular signaling pathways.
    PLoS ONE 01/2014; 9(7):e102526. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diacylglycerol is a key regulator of cell physiology, controlling the membrane recruitment and activation of signaling molecules. Accordingly, diacylglycerol generation and metabolism are strictly controlled, allowing for localized regulation of its concentration. While the increased production of diacylglycerol upon receptor triggering is well recognized, the modulation of diacylglycerol metabolism by diacylglycerol kinases (DGKs) is less characterized. Some agonists induce DGK activation and recruitment to the plasma membrane, promoting diacylglycerol metabolism to phosphatidic acid. Conversely, several reports indicate that signaling pathways that selectively inhibits DGK isoforms can enhance cellular diacylglycerol levels and signal transduction. For example, the impairment of DGKθ activity by RhoA binding to the catalytic domain represents a conserved mechanism controlling diacylglycerol signaling from C. elegans motoneurons to mammalian hepatocytes. Similarly, DGKα activity is inhibited in lymphocytes by TCR signaling, thus contributing to a rise in diacylglycerol concentration for downstream signaling. Finally, DGKμ activity is inhibited by ischemia/reperfusion-generated reactive oxygen species in airway endothelial cells, promoting diacylglycerol-mediated ion channel opening and edema. In those systems, DGKs provide a gatekeeper function by blunting diacylglycerol levels or possibly establishing permissive domains for diacylglycerol signaling. In this review, I discuss the possible general relevance of DGK inhibition to enhanced diacylglycerol signaling.
    Advances in Biological Regulation. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In neutrophils and Dictyostelium, chemoattractant gradients generate directed cell migration by eliciting signaling events that bias intrinsic motility and favor the production and retention of upgradient pseudopods [1, 2]. Phosphoinositides are actively regulated during chemotaxis in these cells, most iconically in the production of PI(3,4,5)P3 gradients within the plasma membrane [3, 4]. Although it is now known that PI(3,4,5)P3 signaling is nonessential for gradient sensing [5, 6], the role of the related phosphoinositide PI(4,5)P2 is little understood, despite its clear importance in many cell biological processes [7]. We describe here a PIP5 kinase, PikI, which produces PI(4,5)P2 and is essential for efficient chemotaxis of Dictyostelium cells. Without PikI, PI(4,5)P2 levels are reduced by 90%, and while pikI(-) cells move at normal speeds, they are highly disorientated in cAMP gradients. Following chemotactic stimulation, Ras is efficiently activated in pikI(-) cells, yet Ras-dependent responses (including activation of PKB) are severely impaired. PikI is phosphorylated by PKB [8], and in vitro studies of a phosphomimic mutant suggest that this phosphorylation increases PikI activity. We propose that adequate PI(4,5)P2 levels are required to couple activated Ras to its downstream effectors and that these levels are regulated by PikI, making it a crucial player in gradient sensing.
    Current biology: CB 01/2014; · 10.99 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014