CGMP decreases surface NKCC2 levels in the thick ascending limb: role of phosphodiesterase 2 (PDE2)

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, and Department of Physiology, Wayne State University, 2799 West Grand Blvd., Detroit, MI 48202, USA.
American journal of physiology. Renal physiology (Impact Factor: 3.3). 09/2008; 295(4):F877-87. DOI: 10.1152/ajprenal.00449.2007
Source: PubMed

ABSTRACT NaCl absorption in the medullary thick ascending limb of the loop of Henle (THAL) is mediated by the apical Na/K/2Cl cotransporter (NKCC2). Hormones that increase cGMP, such as nitric oxide (NO) and natriuretic peptides, decrease NaCl absorption by the THAL. However, the mechanism by which cGMP decreases NaCl absorption in THALs is not known. We hypothesized that cGMP decreases surface NKCC2 levels in the THAL. We used surface biotinylation to measure surface NKCC2 levels in rat THAL suspensions. We tested the effect of the membrane-permeant cGMP analog dibutyryl-cGMP (db-cGMP) on surface NKCC2 levels. Incubating THALs with db-cGMP for 20 min decreased surface NKCC2 levels in a concentration-dependent manner (basal=100%; db-cGMP 100 microM=77+/-7%; 500 microM=54+/-10% and 1,000 microM=61+/-8%). A different cGMP analog 8-bromo-cGMP (8-Br-cGMP) also decreased surface NKCC2 levels by 25%, (basal=100%; 8-Br-cGMP=75+/-5%). Incubation of isolated, perfused THALs with db-cGMP decreased apical surface NKCC2 labeling levels as measured by immunofluorescence and confocal microscopy. cGMP-stimulated phosphodiesterase 2 (PDE2) mediates the inhibitory effect of NO on NaCl absorption by THALs. Thus we examined the role of PDE2 and found that PDE2 inhibitors blocked the effect of db-cGMP on surface NKCC2. Also, a nonstimulatory concentration of db-cAMP blocked the cGMP-induced decrease in surface NKCC2. Finally, db-cGMP inhibited THAL net Cl absorption by 48+/-4%, and this effect was completely blocked by PDE2 inhibition. We conclude that cGMP decreases NKCC2 levels in the apical membrane of THALs and that this effect is mediated by PDE2. This is an important mechanism by which cGMP inhibits NaCl absorption by the THAL.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbon monoxide (CO) is an endogenously produced gas resulting from the degradation of heme by heme oxygense or from fatty acid oxidation. Heme oxygenase (HO) enzymes are constitutively expressed in the kidney (HO-2) and HO-1 is induced in the kidney in response to several physiological and pathological stimuli. While the beneficial actions of HO in the kidney have been recognized for some time, the important role of CO in mediating these effects has not been fully examined. Recent studies using CO inhalation therapy and carbon monoxide releasing molecules (CORMs) have demonstrated that increases in CO alone can be beneficial to the kidney in several forms of acute renal injury by limiting oxidative injury, decreasing cell apoptosis, and promoting cell survival pathways. Renal CO is also emerging as a major regulator of renal vascular and tubular function acting to protect the renal vasculature against excessive vasoconstriction and to promote natriuresis by limiting sodium reabsorption in tubule cells. Within this review, recent studies on the physiological actions of CO in the kidney will be explored as well as the potential therapeutic avenues that are being developed targeting CO in the kidney which may be beneficial in diseases such as acute renal failure and hypertension.
    Current pharmaceutical biotechnology 09/2012; 13(6):819-26. DOI:10.2174/138920112800399284
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uncontrolled diabetes mellitus results in osmotic diuresis. Diabetic patients have lowered nitric oxide (NO) which may exacerbate polyuria. We examined how lack of NO affects the transporters involved in urine concentration in diabetic animals. Diabetes was induced in rats by streptozotocin. Control and diabetic rats were given L-NAME for 3 weeks. Urine osmolality, urine output, and expression of urea and water transporters and the Na-K-2Cl cotransporter were examined. Predictably, diabetic rats presented with polyuria (increased urine volume and decreased urine osmolality). Although metabolic parameters of control rats were unaffected by L-NAME, treated diabetic rats produced 30% less urine and osmolality was restored. UT-A1 and UT-A3 were significantly increased in diabetic rat inner medulla. While L-NAME treatment alone did not alter UT-A1 or UT-A3 abundance, absence of NO prevented the upregulation of both transporters in diabetic rats. Similarly, AQP2 and NKCC2 abundance was increased in diabetic animals however, expression of these transporters were unchanged by L-NAME treatment of diabetes. Increased expression of the concentrating transporters observed in diabetic rats provides a compensatory mechanism to decrease solute loss despite persistent glycosuria. Our studies found that although diabetic-induced glycosylation remained increased, total protein expression was decreased to control levels in diabetic rats treated with L-NAME. While the role of NO in urine concentration remains unclear, lowered NO associated with diabetes may be deleterious to the transporters' response to the subsequent osmotic diuresis.
    Frontiers in Physiology 06/2012; 3:176. DOI:10.3389/fphys.2012.00176
  • [Show abstract] [Hide abstract]
    ABSTRACT: AVP and atrial natriuretic peptide (ANP) have opposite effects in the kidney. AVP induces antidiuresis by insertion of aquaporin-2 (AQP2) water channels into the plasma membrane of collecting duct principal cells. ANP acts as a diuretic factor. An ANP- and nitric oxide (NO)/soluble guanylate cyclase (sGC)-induced insertion of AQP2 into the plasma membrane is reported from different models. However, functional data on the insertion of AQP2 is missing. We used primary cultured inner medullary collecting duct (IMCD) cells and digital holographic microscopy, calcein-quenching measurements, and immunofluorescence and Western blotting to analyze the effects of ANP and NO donors on AQP2 phosphorylation, membrane expression, and water permeability. While AVP led to acceleration in osmotically induced swelling, ANP had no effect. However, in AVP-pretreated cells ANP significantly decreased the kinetics of cell swelling. This effect was mimicked by 8-bromo-cGMP and blunted by PKG inhibition. Stimulation of the NO/sGC pathway or direct activation of sGC with BAY 58-2667 had similar effects to ANP. In cells treated with AVP, AQP2 was predominantly localized in the plasma membrane, and after additional incubation with ANP AQP2 was mostly localized in the cytosol, indicating an increased retrieval of AQP2 from the plasma membrane by ANP. Western blot analysis showed that ANP was able to reduce AVP-induced phosphorylation of AQP2 at position S256. In conclusion, we show that the diuretic action of ANP or NO in the IMCD involves a decreased localization of AQP2 in the plasma membrane which is mediated by cGMP and PKG.
    AJP Renal Physiology 08/2009; 297(3):F693-703. DOI:10.1152/ajprenal.00136.2009