CGMP decreases surface NKCC2 levels in the thick ascending limb: role of phosphodiesterase 2 (PDE2)

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, and Department of Physiology, Wayne State University, 2799 West Grand Blvd., Detroit, MI 48202, USA.
American journal of physiology. Renal physiology (Impact Factor: 3.25). 09/2008; 295(4):F877-87. DOI: 10.1152/ajprenal.00449.2007
Source: PubMed


NaCl absorption in the medullary thick ascending limb of the loop of Henle (THAL) is mediated by the apical Na/K/2Cl cotransporter (NKCC2). Hormones that increase cGMP, such as nitric oxide (NO) and natriuretic peptides, decrease NaCl absorption by the THAL. However, the mechanism by which cGMP decreases NaCl absorption in THALs is not known. We hypothesized that cGMP decreases surface NKCC2 levels in the THAL. We used surface biotinylation to measure surface NKCC2 levels in rat THAL suspensions. We tested the effect of the membrane-permeant cGMP analog dibutyryl-cGMP (db-cGMP) on surface NKCC2 levels. Incubating THALs with db-cGMP for 20 min decreased surface NKCC2 levels in a concentration-dependent manner (basal=100%; db-cGMP 100 microM=77+/-7%; 500 microM=54+/-10% and 1,000 microM=61+/-8%). A different cGMP analog 8-bromo-cGMP (8-Br-cGMP) also decreased surface NKCC2 levels by 25%, (basal=100%; 8-Br-cGMP=75+/-5%). Incubation of isolated, perfused THALs with db-cGMP decreased apical surface NKCC2 labeling levels as measured by immunofluorescence and confocal microscopy. cGMP-stimulated phosphodiesterase 2 (PDE2) mediates the inhibitory effect of NO on NaCl absorption by THALs. Thus we examined the role of PDE2 and found that PDE2 inhibitors blocked the effect of db-cGMP on surface NKCC2. Also, a nonstimulatory concentration of db-cAMP blocked the cGMP-induced decrease in surface NKCC2. Finally, db-cGMP inhibited THAL net Cl absorption by 48+/-4%, and this effect was completely blocked by PDE2 inhibition. We conclude that cGMP decreases NKCC2 levels in the apical membrane of THALs and that this effect is mediated by PDE2. This is an important mechanism by which cGMP inhibits NaCl absorption by the THAL.

12 Reads
  • Source
    • "CO may also regulate sodium reabsorption in the kidney via actions on membrane insertion of transport proteins. For example, recent studies have highlighted an important role for cGMP in the regulation of apical levels of the Na/K/2Cl co-transporter (NKCC2) in the TALH [75] [76]. It is hypothesized that increased levels of cGMP result in the increased turnover of cAMP via activation of cGMP stimulated phosphodiesterase 2 (PDE2) which in turn decreases the insertion of the NKCC2 channel into the apical membrane, a process that is regulate by cAMP [77]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbon monoxide (CO) is an endogenously produced gas resulting from the degradation of heme by heme oxygense or from fatty acid oxidation. Heme oxygenase (HO) enzymes are constitutively expressed in the kidney (HO-2) and HO-1 is induced in the kidney in response to several physiological and pathological stimuli. While the beneficial actions of HO in the kidney have been recognized for some time, the important role of CO in mediating these effects has not been fully examined. Recent studies using CO inhalation therapy and carbon monoxide releasing molecules (CORMs) have demonstrated that increases in CO alone can be beneficial to the kidney in several forms of acute renal injury by limiting oxidative injury, decreasing cell apoptosis, and promoting cell survival pathways. Renal CO is also emerging as a major regulator of renal vascular and tubular function acting to protect the renal vasculature against excessive vasoconstriction and to promote natriuresis by limiting sodium reabsorption in tubule cells. Within this review, recent studies on the physiological actions of CO in the kidney will be explored as well as the potential therapeutic avenues that are being developed targeting CO in the kidney which may be beneficial in diseases such as acute renal failure and hypertension.
    Current pharmaceutical biotechnology 09/2012; 13(6):819-26. DOI:10.2174/138920112800399284 · 2.51 Impact Factor
  • Source
    • "Given the likelihood that treatments of l-NAME longer than 3 weeks increases NKCC2 expression, it would be interesting to see if longer treatment periods amplifies the DM-induced compensatory upregulation of the transporter. NO stimulates production of cGMP which has been shown to decrease surface NKCC2 levels thus rendering the transporter inactive (Ares et al., 2008). It is possible that the l-NAME used in our studies prevents the synthesis of cGMP allowing NKCC2 to accumulate at the plasma membrane where it is active in the DM animals contributing to the reduction of polyuria in the l-NAME-treated DM rats. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Uncontrolled diabetes mellitus results in osmotic diuresis. Diabetic patients have lowered nitric oxide (NO) which may exacerbate polyuria. We examined how lack of NO affects the transporters involved in urine concentration in diabetic animals. Diabetes was induced in rats by streptozotocin. Control and diabetic rats were given L-NAME for 3 weeks. Urine osmolality, urine output, and expression of urea and water transporters and the Na-K-2Cl cotransporter were examined. Predictably, diabetic rats presented with polyuria (increased urine volume and decreased urine osmolality). Although metabolic parameters of control rats were unaffected by L-NAME, treated diabetic rats produced 30% less urine and osmolality was restored. UT-A1 and UT-A3 were significantly increased in diabetic rat inner medulla. While L-NAME treatment alone did not alter UT-A1 or UT-A3 abundance, absence of NO prevented the upregulation of both transporters in diabetic rats. Similarly, AQP2 and NKCC2 abundance was increased in diabetic animals however, expression of these transporters were unchanged by L-NAME treatment of diabetes. Increased expression of the concentrating transporters observed in diabetic rats provides a compensatory mechanism to decrease solute loss despite persistent glycosuria. Our studies found that although diabetic-induced glycosylation remained increased, total protein expression was decreased to control levels in diabetic rats treated with L-NAME. While the role of NO in urine concentration remains unclear, lowered NO associated with diabetes may be deleterious to the transporters' response to the subsequent osmotic diuresis.
    Frontiers in Physiology 06/2012; 3:176. DOI:10.3389/fphys.2012.00176 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The apical renal Na(+)-K(+)-2Cl(-) cotransporter NKCC2 mediates NaCl absorption by the thick ascending limb (TAL) of Henle's loop. cAMP stimulates NKCC2 by enhancing steady-state apical membrane levels of this protein; however, the trafficking and signaling mechanisms by which this occurs have not been studied. Here, we report that stimulation of endogenous cAMP levels with either forskolin/3-isobutyl-1-methylxanthine (IBMX) or the V2 receptor agonist [deamino-Cys(1),d-Arg(8)]vasopressin increases steady-state surface NKCC2 and that the protein kinase A (PKA) inhibitor H-89 blocks this effect. Confocal imaging of apical surface NKCC2 in isolated perfused TALs confirmed a stimulatory effect of cAMP on apical trafficking that was blocked by PKA inhibition. Selective stimulation of PKA with the agonist N(6)-benzoyl-cAMP (500 microm) stimulated steady-state surface NKCC2, whereas the Epac-selective agonist 8-p-chlorophenylthio-2'-O-methyl-cAMP (100 and 250 microm) had no effect. To explore the trafficking mechanism by which cAMP increases apical NKCC2, we measured cumulative apical membrane exocytosis and NKCC2 exocytic insertion in TALs. By monitoring apical FM1-43 fluorescence, we observed rapid stimulation of apical exocytosis (2 min) by forskolin/IBMX. We also found constitutive exocytic insertion of NKCC2 in TALs over time, which was increased by 3-fold in the presence of forskolin/IBMX. PKA inhibition blunted cAMP-stimulated exocytic insertion but did not affect the rate of constitutive exocytosis. We conclude that cAMP stimulates steady-state apical surface NKCC2 by stimulating exocytic insertion and that this process is highly dependent on PKA but not Epac.
    Journal of Biological Chemistry 08/2009; 284(37):24965-71. DOI:10.1074/jbc.M109.037135 · 4.57 Impact Factor
Show more