Article

Gene expression profiles in liver of pigs with extreme high and low levels of androstenone.

The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway.
BMC Veterinary Research (Impact Factor: 1.86). 09/2008; 4:29. DOI: 10.1186/1746-6148-4-29
Source: PubMed

ABSTRACT Boar taint is the unpleasant odour and flavour of the meat of uncastrated male pigs that is primarily caused by high levels of androstenone and skatole in adipose tissue. Androstenone is a steroid and its levels are mainly genetically determined. Studies on androstenone metabolism have, however, focused on a limited number of genes. Identification of additional genes influencing levels of androstenone may facilitate implementation of marker assisted breeding practices. In this study, microarrays were used to identify differentially expressed genes and pathways related to androstenone metabolism in the liver from boars with extreme levels of androstenone in adipose tissue.
Liver tissue samples from 58 boars of the two breeds Duroc and Norwegian Landrace, 29 with extreme high and 29 with extreme low levels of androstenone, were selected from more than 2500 individuals. The samples were hybridised to porcine cDNA microarrays and the 1% most significant differentially expressed genes were considered significant. Among the differentially expressed genes were metabolic phase I related genes belonging to the cytochrome P450 family and the flavin-containing monooxygenase FMO1. Additionally, phase II conjugation genes including UDP-glucuronosyltransferases UGT1A5, UGT2A1 and UGT2B15, sulfotransferase STE, N-acetyltransferase NAT12 and glutathione S-transferase were identified. Phase I and phase II metabolic reactions increase the water solubility of steroids and play a key role in their elimination. Differential expression was also found for genes encoding 17beta-hydroxysteroid dehydrogenases (HSD17B2, HSD17B4, HSD17B11 and HSD17B13) and plasma proteins alpha-1-acid glycoprotein (AGP) and orosomucoid (ORM1). 17beta-hydroxysteroid dehydrogenases and plasma proteins regulate the availability of steroids by controlling the amount of active steroids accessible to receptors and available for metabolism. Differences in the expression of FMO1, NAT12, HSD17B2 and HSD17B13 were verified by quantitative real competitive PCR.
A number of genes and pathways related to metabolism of androstenone in liver were identified, including new candidate genes involved in phase I oxidation metabolism, phase II conjugation metabolism, and regulation of steroid availability. The study is a first step towards a deeper understanding of enzymes and regulators involved in pathways of androstenone metabolism and may ultimately lead to the discovery of markers to reduce boar taint.

0 Bookmarks
 · 
176 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Boar taint is the unpleasant odour of meat derived from non-castrated male pigs, caused by the accumulation of androstenone and skatole in fat. Skatole is a tryptophan metabolite produced by intestinal bacteria in gut and catabolised in liver. Since boar taint affects consumer's preference, the aim of this study was to perform transcriptome profiling in liver of boars with divergent skatole levels in backfat by using RNA-Seq. The total number of reads produced for each liver sample ranged from 11.8 to 39.0 million. Approximately 448 genes were differentially regulated (p-adjusted <0.05). Among them, 383 genes were up-regulated in higher skatole group and 65 were down-regulated (p<0.01, FC>1.5). Differentially regulated genes in the high skatole liver samples were enriched in metabolic processes such as small molecule biochemistry, protein synthesis, lipid and amino acid metabolism. Pathway analysis identified the remodeling of epithelial adherens junction and TCA cycle as the most dominant pathways which may play important roles in skatole metabolism. Differential gene expression analysis identified candidate genes in ATP synthesis, cytochrome P450, keratin, phosphoglucomutase, isocitrate dehydrogenase and solute carrier family. Additionally, polymorphism and association analysis revealed that mutations in ATP5B, KRT8, PGM1, SLC22A7 and IDH1 genes could be potential markers for skatole levels in boars. Furthermore, expression analysis of exon usage of three genes (ATP5B, KRT8 and PGM1) revealed significant differential expression of exons of these genes in different skatole levels. These polymorphisms and exon expression differences may have impacts on the gene activity ultimately leading to skatole variation and could be used as genetic marker for boar taint related traits. However, further validation is required to confirm the effect of these genetic markers in other pig populations in order to be used in genomic selection against boar taint in pig breeding programs.
    PLoS ONE 01/2013; 8(8):e72298. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Androstenone is one of the major compounds responsible for boar taint, a pronounced urine-like odor produced when cooking boar meat. Several studies have identified quantitative trait loci (QTL) for androstenone level on Sus scrofa chromosome (SSC) 6. For one of the candidate genes in the region SULT2A1, a difference in expression levels in the testis has been shown at the protein and RNA level. Haplotypes were predicted for the QTL region and their effects were estimated showing that haplotype 1 was consistently related with a lower level, and haplotype 2 with a higher level of androstenone. A recombinant haplotype allowed us to narrow down the QTL region from 3.75 Mbp to 1.94 Mbp. An RNA-seq analysis of the liver and testis revealed six genes that were differentially expressed between homozygotes of haplotypes 1 and 2. Genomic sequences of these differentially expressed genes were checked for variations within potential regulatory regions. We identified one variant located within a CpG island that could affect expression of SULT2A1 gene. An allele-specific expression analysis in the testis did not show differential expression between the alleles of SULT2A1 located on the different haplotypes in heterozygous animals. However a synonymous mutation C166T (SSC6: 49,117,861 bp in Sscrofa 10.2; C/T) was identified within the exon 2 of SULT2A1 for which the haplotype 2 only had the C allele which was higher expressed than the T allele, indicating haplotype-independent allelic-imbalanced expression between the two alleles. A phylogenetic analysis for the 1.94 Mbp region revealed that haplotype 1, associated with low androstenone level, originated from Asia. Differential expression could be observed for six genes by RNA-seq analysis. No difference in the ratio of C:T expression of SULT2A1 for the haplotypes was found by the allele-specific expression analysis, however, a difference in expression between the C over T allele was found for a variation within SULT2A1, showing that the difference in androstenone levels between the haplotypes is not caused by the SNP in exon 2.
    BMC Genetics 01/2014; 15(1):4. · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Male pigs are routinely castrated at a young age to prevent the formation of androstenone, a 16-androstene testicular steroid that is a major component of boar taint. The practice of castration has been increasingly viewed as unfavorable, due to both economic considerations and animal welfare concerns. Other means of controlling boar taint, including reducing the synthesis of androstenone in the testes, would eliminate the need for castration. In this study, we determined the effects of transactivation of three nuclear receptors, the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and farnesoid X receptor (FXR), on gene expression and steroid hormone metabolism in primary porcine Leydig cells. Primary cells were isolated from mature boars, and transcript expression levels were assayed using real-time PCR. The transcripts of interest included porcine orthologs of common phase I and phase II metabolic enzymes, enzymes involved in steroidogenesis, and transcripts previously shown to be differentially expressed in boars with high androstenone and boar taint levels. Transactivation of CAR, PXR, or FXR increased the expression of several genes involved in steroidogenesis, including cytochrome B5A (CYB5A) and cytochrome B5 reductase 1 (CYB5R1), as well as hydroxysteroid (17-beta) dehydrogenase 4 (HSD17B4) and retinol dehydrogenase 12 (RDH12). Treatment with (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO), a CAR agonist, or rifampicin (RIF), a PXR agonist, resulted in significantly (p < 0.05) decreased sex steroid production and significantly (p < 0.05) increased production of 16-androstene steroids. Treatment with the FXR agonist chenodeoxycholic acid (CDCA) resulted in significantly (p < 0.05) decreased sex steroid production. These results indicate that transactivation of these nuclear receptors may lead to increased levels of 16-androstene steroids, likely by altering the activity of CYP17A1 through CYB5A and CYB5R1 to the andien-β synthase reaction and away from the 17α-hydroxylase and C17, 20 lyase reactions.
    The Journal of steroid biochemistry and molecular biology 09/2012; 133:93–100. · 3.98 Impact Factor

Full-text (3 Sources)

Download
53 Downloads
Available from
May 20, 2014