Article

Gene expression profiles in liver of pigs with extreme high and low levels of androstenone.

The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway.
BMC Veterinary Research (Impact Factor: 1.86). 09/2008; 4:29. DOI: 10.1186/1746-6148-4-29
Source: PubMed

ABSTRACT Boar taint is the unpleasant odour and flavour of the meat of uncastrated male pigs that is primarily caused by high levels of androstenone and skatole in adipose tissue. Androstenone is a steroid and its levels are mainly genetically determined. Studies on androstenone metabolism have, however, focused on a limited number of genes. Identification of additional genes influencing levels of androstenone may facilitate implementation of marker assisted breeding practices. In this study, microarrays were used to identify differentially expressed genes and pathways related to androstenone metabolism in the liver from boars with extreme levels of androstenone in adipose tissue.
Liver tissue samples from 58 boars of the two breeds Duroc and Norwegian Landrace, 29 with extreme high and 29 with extreme low levels of androstenone, were selected from more than 2500 individuals. The samples were hybridised to porcine cDNA microarrays and the 1% most significant differentially expressed genes were considered significant. Among the differentially expressed genes were metabolic phase I related genes belonging to the cytochrome P450 family and the flavin-containing monooxygenase FMO1. Additionally, phase II conjugation genes including UDP-glucuronosyltransferases UGT1A5, UGT2A1 and UGT2B15, sulfotransferase STE, N-acetyltransferase NAT12 and glutathione S-transferase were identified. Phase I and phase II metabolic reactions increase the water solubility of steroids and play a key role in their elimination. Differential expression was also found for genes encoding 17beta-hydroxysteroid dehydrogenases (HSD17B2, HSD17B4, HSD17B11 and HSD17B13) and plasma proteins alpha-1-acid glycoprotein (AGP) and orosomucoid (ORM1). 17beta-hydroxysteroid dehydrogenases and plasma proteins regulate the availability of steroids by controlling the amount of active steroids accessible to receptors and available for metabolism. Differences in the expression of FMO1, NAT12, HSD17B2 and HSD17B13 were verified by quantitative real competitive PCR.
A number of genes and pathways related to metabolism of androstenone in liver were identified, including new candidate genes involved in phase I oxidation metabolism, phase II conjugation metabolism, and regulation of steroid availability. The study is a first step towards a deeper understanding of enzymes and regulators involved in pathways of androstenone metabolism and may ultimately lead to the discovery of markers to reduce boar taint.

0 Bookmarks
 · 
152 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breed differences in steroidogenic activity between primary Leydig cells derived from neonatal purebred Duroc and Norwegian Landrace boars were investigated in vitro. Concentrations of testosterone, estradiol, androstenone, cortisol and progesterone produced into the medium were determined. To explore underlying mechanisms the cellular expression of a suite of genes relevant in steroidogenesis was measured using reverse transcription and quantitative PCR (RT-qPCR). Basal steroid concentrations indicated a larger production capacity for steroids in unstimulated Duroc cells. Stimulation of the cells with LH increased steroid hormone secretion significantly in both breeds in a dose dependent manner. Testosterone and androstenone concentrations increased approximately 50- and 15-fold, respectively, whereas concentrations of estradiol, cortisol and progesterone increased to a lesser extent. At levels of maximal LH stimulation, absolute steroid concentrations were higher in Duroc. However, the relative increase in hormone concentrations was significantly lower in Duroc cells for estradiol, progesterone and cortisol when compared to basal levels. LH exposure was associated with a general up-regulation of mRNA levels for steroidogenic genes, stronger in Duroc than in Norwegian Landrace. This was in agreement with the higher absolute concentrations of steroid hormones measured in culture medium from the LH-stimulated Duroc Leydig cells, but did not concur with the fact that the relative increase in hormone production was lower in Duroc than in Norwegian Landrace Leydig cells for some hormones. It was concluded that breed differences in steroid hormone concentrations and gene expression between Norwegian Landrace and Duroc are complex and cannot be explained by a simple mechanism of action.
    Theriogenology 06/2011; 76(6):1058-69. · 2.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our current knowledge of human biology is often based on studying a wide range of animal species. In particular, for understanding human diseases, the development of adequate animal models is of immediate importance. Although genetic strains and transgenic animal model organisms like fruit fly (Drosophila), zebrafish and rodents are highly informative about the function of single genes and proteins, these organisms do not always closely reflect human biology, and alternative animal models are thus in great demand. The pig is a non-primate mammal that closely resembles man in anatomy, physiology and genetics. Pigs, although not easily kept for laboratory research, are, however, readily available for biomedical research through the large scale industrial production of pigs produced for human consumption. Recent research has facilitated the biological experimentation with pigs, and helped develop the pig into a novel model organism for biomedical research. This toolbox includes the near completion of the pig genome, catalogues of genes and genetic variation in pigs, extensive characterization of pig proteomes and transcriptomes, as well as the development of transgenic disease models. The aim of this review is to highlight the current progress of these ongoing areas of research, which are mandatory for successful development of biomedical pig models that are in demand for understanding human biology in health and disease.
    Briefings in functional genomics 05/2010; 9(3):208-19. · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Male pigs are routinely castrated at a young age to prevent the formation of androstenone, a 16-androstene testicular steroid that is a major component of boar taint. The practice of castration has been increasingly viewed as unfavorable, due to both economic considerations and animal welfare concerns. Other means of controlling boar taint, including reducing the synthesis of androstenone in the testes, would eliminate the need for castration. In this study, we determined the effects of transactivation of three nuclear receptors, the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and farnesoid X receptor (FXR), on gene expression and steroid hormone metabolism in primary porcine Leydig cells. Primary cells were isolated from mature boars, and transcript expression levels were assayed using real-time PCR. The transcripts of interest included porcine orthologs of common phase I and phase II metabolic enzymes, enzymes involved in steroidogenesis, and transcripts previously shown to be differentially expressed in boars with high androstenone and boar taint levels. Transactivation of CAR, PXR, or FXR increased the expression of several genes involved in steroidogenesis, including cytochrome B5A (CYB5A) and cytochrome B5 reductase 1 (CYB5R1), as well as hydroxysteroid (17-beta) dehydrogenase 4 (HSD17B4) and retinol dehydrogenase 12 (RDH12). Treatment with (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO), a CAR agonist, or rifampicin (RIF), a PXR agonist, resulted in significantly (p < 0.05) decreased sex steroid production and significantly (p < 0.05) increased production of 16-androstene steroids. Treatment with the FXR agonist chenodeoxycholic acid (CDCA) resulted in significantly (p < 0.05) decreased sex steroid production. These results indicate that transactivation of these nuclear receptors may lead to increased levels of 16-androstene steroids, likely by altering the activity of CYP17A1 through CYB5A and CYB5R1 to the andien-β synthase reaction and away from the 17α-hydroxylase and C17, 20 lyase reactions.
    The Journal of steroid biochemistry and molecular biology 09/2012; 133:93–100. · 3.98 Impact Factor

Full-text (3 Sources)

View
48 Downloads
Available from
May 20, 2014