Article

THE VISCOSITY OF LIQUIDS. II. THE VISCOSITY-COMPOSITION CURVE FOR IDEAL LIQUID MIXTURES.1

04/2002; DOI: 10.1021/ja02254a001
1 Bookmark
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tensioned metastable fluids provide a powerful means for low-cost, efficient detection of a wide range of nuclear particles with spectroscopic capabilities. Past work in this field has relied on one-component liquids. Pure liquids may provide very good detection capability in some aspects, such as low thresholds or large radiation interaction cross sections, but it is rare to find a liquid that is a perfect candidate on both counts. It was hypothesized that liquid mixtures could offer optimal benefits and present more options for advancement. However, not much is known about radiation-induced thermal-hydraulics involving destabilization of mixtures of tensioned metastable fluids. This paper presents results of experiments that assess key thermophysical properties of liquid mixtures governing fast neutron radiation-induced cavitation in liquid mixtures. Experiments were conducted by placing liquid mixtures of various proportions in tension metastable states using Purdue's centrifugally-tensioned metastable fluid detector (CTMFD) apparatus. Liquids chosen for this study covered a good representation of both thermal and fast neutron interaction cross sections, a range of cavitation onset thresholds and a range of thermophysical properties. Experiments were devised to measure the effective liquid mixture viscosity and surface tension. Neutron-induced tension metastability thresholds were found to vary non-linearly with mixture concentration; these thresholds varied linearly with surface tension and inversely with mixture vapor pressure (on a semi-log scale), and no visible trend with mixture viscosity nor with latent heat of vaporization.
    Nuclear Engineering and Technology 09/2009; 41(7). · 0.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Densities (ρ) and viscosities (η) of ternary mixtures of 2-methylbutan-2-ol (1) + trichloroethylene (2) + acetonitrile (3) and the related binary mixtures of {2-methylbutan-2-ol (1) + trichloroethylene (2)}, {2-methylbutan-2-ol (1) + acetonitrile (3)}, and {trichloroethylene (2) + acetonitrile (3)} have been measured over the whole composition range at 298.15 K and at ambient pressure (81.5 kPa). Excess molar volumes $ V_{\text{m}}^{\text{E}} $ , viscosity deviations Δη, and excess Gibbs energies of activation ΔG *E were derived from the experimental data. The binary and ternary data of $ V_{\text{m}}^{\text{E}} $ , Δη, and ΔG *E for the binary and ternary mixtures were correlated as functions of the mole fraction by using the Redlich–Kister and the Cibulka equations. Kinematic viscosities of the binary mixtures were correlated by means of several semi-empirical equations to determine the fitting parameters and the SDs. The experimental results are analyzed to discuss the nature and strength of intermolecular interactions in these mixtures.
    Journal of Solution Chemistry 10/2013; 42(10). · 1.08 Impact Factor
  • Source
    Journal of Rheology 01/2012; 56(5):1299-. · 3.28 Impact Factor