Polymer surface and thin film vibrational dynamics of poly(methyl methacrylate), polybutadiene, and polystyrene.

The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, USA.
The Journal of Chemical Physics (Impact Factor: 3.12). 08/2008; 129(4):044906. DOI: 10.1063/1.2939018
Source: PubMed

ABSTRACT Inelastic helium atom scattering has been used to investigate the vibrational dynamics at the polymer vacuum interface of poly(methyl methacrylate), polystyrene, and polybutadiene thin films on SiO(x)Si(100). Experiments were performed for a large range of surface temperatures below and above the glass transition of these three polymers. The broad multiphonon feature that arises in the inelastic scattering spectra at surface temperatures between 175 and 500 K is indicative of the excitation of a continuum of surface vibrational modes. Similarities exist in the line shapes of the scattering spectra, indicating that helium atoms scatter from groups of similar mass on the surface of these polymer thin films. The line shapes obtained were further analyzed using a semiclassical scattering model. This study has shown that quite different polymer thin films can have similar interfacial dynamics at the topmost molecular layer.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The scattering of atomic and molecular beams from well-characterized surfaces is a useful method for studying the dynamics of gas-surface interactions, providing precise information on the energy and momentum exchange which occur in such encounters. We apply this technique to new systems including disordered films of macromolecules, complex interfaces of macromolecular systems, and hybrid organic-semiconductor interfaces. Time-lapse atomic force microscopy studies of diblock copolymer structural evolution and fluctuations complement the scattering data to give a more complete understanding of dynamical processes in these complex disordered films. Our new scattering findings quantitatively characterize changes in interfacial dynamics including confinement in thin films of poly(methyl methacrylate) and changes in the physical properties of poly(ethylene terephthalate) films as they transform from the glassy to their semicrystalline phase. Further measurements on a hybrid organic-semiconductor interface, methyl-terminated silicon (111), reveal that the surface thermal motion and gas-surface energy accommodation are dominated by local molecular vibrations while the interfacial lattice dynamics remain accessible through helium scattering. High temperature atomic force microscopy allows direct, real-time visualization of structural reorganization and defect migration in poly(styrene)-block-poly(methyl methacrylate) films, revealing details of film reorganization and thermal annealing. Moreover, we employed lithographically created channels to guide the alignment of polymer microdomains. This, in turn, allows direct observation of the mechanisms for diffusion and annihilation of dislocation and disclination defects. In summary, this paper elaborates on the power of combining atom scattering and scanning probe microscopy to interrogate the vibrational dynamics, energy accommodation, energy flow, and structural reorganization in complex interfaces.
    Faraday Discussions 01/2012; 157:307-23; discussion 375-98. · 3.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The surface dynamics of amorphous and semicrystalline polymer films have been measured using helium atom scattering. Time-of-flight data were collected to resolve the elastic and inelastic scattering components in the diffuse scattering of neutral helium atoms from the surface of a thin poly(ethylene terephthalate) film. Debye-Waller attenuation was observed for both the amorphous and semicrystalline phases of the polymer by recording the decay of elastically scattered helium atoms with increasing surface temperature. Thermal attenuation measurements in the specular scattering geometry yielded perpendicular mean-square displacements of 2.7•10(-4) Å(2) K(-1) and 3.1•10(-4) Å(2) K(-1) for the amorphous and semicrystalline surfaces, respectively. The semicrystalline surface was consistently ∼15% softer than the amorphous across a variety of perpendicular momentum transfers. The Debye-Waller factors were also measured at off-specular angles to characterize the parallel mean-square displacements, which were found to increase by an order of magnitude over the perpendicular mean-square displacements for both surfaces. In contrast to the perpendicular motion, the semicrystalline state was ∼25% stiffer than the amorphous phase in the surface plane. These results were uniquely accessed through low-energy neutral helium atom scattering due to the highly surface-sensitive and nonperturbative nature of these interactions. The goal of tailoring the chemical and physical properties of complex advanced materials requires an improved understanding of interfacial dynamics, information that is obtainable through atomic beam scattering methods.
    Proceedings of the National Academy of Sciences 01/2011; 108(3):977-82. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is shown that a straightforward measure of the temperature dependence of energy resolved atom–surface scattering spectra measured under classical conditions can be related to the strength of the surface corrugation. Using classical perturbation theory combined with a Langevin bath formalism for describing energy transfer, explicit expressions for the scattering probabilities are obtained for both two-dimensional, in-plane scattering and full three-dimensional scattering. For strong surface corrugations results expressed as analytic closed-form equations for the scattering probability are derived which demonstrate that the temperature dependence of the scattering probability weakens with increasing corrugation strength. The relationship to the inelastic rainbow is briefly discussed.
    Journal of Physics Condensed Matter 02/2012; 24(10):104001. · 2.22 Impact Factor


Available from