Article

Insect vector interactions with persistently transmitted viruses.

Department of Disease and Stress Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom.
Annual Review of Phytopathology (Impact Factor: 11). 10/2008; 46:327-59. DOI: 10.1146/annurev.phyto.022508.092135
Source: PubMed

ABSTRACT The majority of described plant viruses are transmitted by insects of the Hemipteroid assemblage that includes aphids, whiteflies, leafhoppers, planthoppers, and thrips. In this review we highlight progress made in research on vector interactions of the more than 200 plant viruses that are transmitted by hemipteroid insects beginning a few hours or days after acquisition and for up to the life of the insect, i.e., in a persistent-circulative or persistent-propagative mode. These plant viruses move through the insect vector, from the gut lumen into the hemolymph or other tissues and finally into the salivary glands, from which these viruses are introduced back into the plant host during insect feeding. The movement and/or replication of the viruses in the insect vectors require specific interactions between virus and vector components. Recent investigations have resulted in a better understanding of the replication sites and tissue tropism of several plant viruses that propagate in insect vectors. Furthermore, virus and insect proteins involved in overcoming transmission barriers in the vector have been identified for some virus-vector combinations.

Download full-text

Full-text

Available from: Anna E Whitfield, Jul 06, 2015
1 Follower
 · 
359 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tospoviruses are plant viruses in the genus Bunyaviridae transmitted in a persistent–propagative manner by a range of thrips species and cause disease in wide range of cultivated crops and wild hosts. The viruses in this genus are the only plant-infecting members of the Bunyaviridae. A distinguishing feature, of tospoviruses, from other persistent–propagative plant viruses is that acquisition from infected host plants only occurs by larvae of thrips species. This transmission characteristic is modelled generically as acquisition by juveniles, an invasion threshold is derived, and the dynamics of the system are compared with systems where adults only are involved in acquisition and inoculation. The comparison suggests that in the model disease develops faster and to a greater extent where adults are involved in both acquisition and inoculation. In that case, mobile non-viruliferous adults visit infected plants to acquire virus and in turn visit healthy plants to inoculate virus, whereas acquisition by non-mobile juveniles depends firstly on eggs being laid on an infected plant and then on the virus passaging transstadially from the juvenile to the mobile adult form: other factors being equal, the greater the mobility of vectors the greater the probability of both acquisition and inoculation. Where acquisition is by both juvenile and adult forms of the vector, the derived invasion threshold is simply the sum of the component thresholds for each life stage; however, there may be a fitness cost on combining these characteristics expressed as a trade-off between optimising the life history parameters involved in each acquisition route.
    Arthropod-Plant Interactions 03/2015; 9(2). DOI:10.1007/s11829-015-9363-2 · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogen-mediated interactions between insect vectors and their host plants can affect herbivore fitness and the epidemiology of plant diseases. While the role of plant quality and defense in mediating these tripartite interactions has been recognized, there are many ecologically and economically important cases where the nature of the interaction has yet to be characterized. The Bemisia tabaci (Gennadius) cryptic species Mediterranean (MED) is an important vector of tomato yellow leaf curl virus (TYLCV), and performs better on virus-infected tomato than on uninfected controls. We assessed the impact of TYLCV infection on plant quality and defense, and the direct impact of TYLCV infection on MED feeding. We found that although TYLCV infection has a minimal direct impact on MED, the virus alters the nutritional content of leaf tissue and phloem sap in a manner beneficial to MED. TYLCV infection also suppresses herbivore-induced production of plant defensive enzymes and callose deposi-tion. The strongly positive net effect on TYLCV on MED is consistent with previously reported patterns of whitefly behavior and performance, and provides a foundation for further exploration of the molecular mechanisms responsible for these effects and the evolutionary processes that shape them.
    Journal of Economic Entomology 02/2015; 108(1):11-19. DOI:10.1093/jee/tou012 · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induced plant defenses against either pathogens or herbivore attackers are regulated by phytohormones. These phytohormones are increasingly recognized as important mediators of interactions between organisms associated with plants. In this review we discuss the role of plant defense hormones in sequential tri-partite interactions among plants, pathogenic microbes and herbivorous insects, based on the most recent literature. We discuss the importance of pathogen trophic strategy in the interaction with herbivores that exhibit different feeding modes. Plant resistance mechanisms also affect plant quality in future interactions with attackers. We discuss exemplary evidence for the hypotheses that (i) biotrophic pathogens can facilitate chewing herbivores, unless plants exhibit effector-triggered immunity, but (ii) facilitate or inhibit phloem feeders. (iii) Necrotrophic pathogens, on the other hand, can inhibit both phloem feeders and chewers. We also propose herbivore feeding mode as predictor of effects on pathogens of different trophic strategies, providing evidence for the hypotheses that (iv) phloem feeders inhibit pathogen attack by increasing SA induction, whereas (v) chewing herbivores tend not to affect necrotrophic pathogens, while they may either inhibit or facilitate biotrophic pathogens. Putting these hypotheses to the test will increase our understanding of phytohormonal regulation of plant defense to sequential attack by plant pathogens and insect herbivores. This will provide valuable insights into plant-mediated ecological interactions between members of the plant- associated community.
    Journal of Chemical Ecology 08/2014; 40:730–741. DOI:10.1007/s10886-014-0480-7 · 2.24 Impact Factor