Three-gene expression signature predicts survival in early-stage squamous cell carcinoma of the lung

University of Gdansk, Gdansk, Poland.
Clinical Cancer Research (Impact Factor: 8.19). 08/2008; 14(15):4794-9. DOI: 10.1158/1078-0432.CCR-08-0576
Source: PubMed

ABSTRACT Adjuvant treatment may improve survival in early-stage squamous cell carcinoma (SCC) of the lung; however, the absolute gain is modest and mainly limited to stage II-IIIA. Current staging methods are imprecise indications of prognosis, but high-risk patients can be identified by gene expression profiling and considered for adjuvant therapy.
The expression of 29 genes was assessed by reverse transcriptase quantitative PCR in frozen primary tumor specimens obtained from 66 SCC patients who had undergone surgical resection. Expression values were dichotomized using the median as a cutoff value. We used a risk score to develop a gene expression model for the prediction of survival.
The univariate analysis of gene expression in the training cohort identified 10 genes with significant prognostic value: CSF1, EGFR, CA IX, PH4, KIAA0974, ANLN, VEGFC, NTRK1, FN1, and INR1. In the multivariate Cox model, CSF1 (hazard ratio, 3.5; P = 0.005), EGFR (hazard ratio, 2.7; P = 0.02), CA IX (hazard ratio, 0.2; P < 0.0001), and tumor size >4 cm (hazard ratio, 2.7; P = 0.02) emerged as significant markers for survival. The high prognostic value of a risk score based on the expression of the three genes (CSF1, EGFR, and CA IX) was positively validated in a separate cohort of 26 patients in an independent laboratory (P = 0.05).
The three-gene signature is strongly associated with prognosis in early-stage SCC. Positive independent validation suggests its suitability for selecting SCC patients with an increased risk of death who might benefit from adjuvant treatment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Anillin (ANLN), an actin-binding protein, is required for cytokinesis. Recently, ANLN has been identified as a biomarker in diverse human cancers; however, the precise role of ANLN in breast cancer remains unclear. In this study, we firstly detected the expression of ANLN in 71 patients with breast cancer by immunohistochemistry, and found ANLN was highly expressed in breast cancer tissues. To evaluate the function of ANLN in breast cancer cells, we employed lentivirus-mediated RNA interference to knock down ANLN expression in two human breast cancer cell lines, MDA-MB-231, and ZR-75-30. Knockdown of ANLN remarkably inhibited the proliferation rate and colony formation ability of both breast cancer cell lines. Moreover, flow cytometry analysis showed that depletion of ANLN in MDA-MB-231 cells blocked the cell cycle progression, with more cells delayed at G2/M phase, due to phosphorylation of Cdc2 and suppression of Cyclin D1. Furthermore, knockdown of ANLN strongly suppressed the migration of breast cancer cells, strengthening the evidence that ANLN could be involved in breast cancer progression. Our results may suggest ANLN as a potential target candidate in breast cancer.
    Molecular and Cellular Biochemistry 09/2014; DOI:10.1007/s11010-014-2200-6 · 2.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways.
    Oncotarget 08/2014; 5(19). · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have focused on exploring the associations between organ development and malignant tumors; however, the clinical relevance of the development signatures was inadequately addressed in lung cancer. In this study, we explored the associations between lung development and lung cancer progression by analyzing a total of two development and seven cancer datasets. We identified representative expression patterns (continuously up- and down-regulated) from development and cancer profiles, and inverse pattern associations were observed at both the gene and functional levels. Furthermore, we dissected the biological processes dominating the associations, and found that proliferation and immunity were respectively involved in the two inverse development-cancer expression patterns. Through sub-pathway analysis of the signatures with inverse expression patterns, we finally identified a 13-gene risk signature from the cell cycle sub-pathway, and evaluated its predictive performance for lung cancer patient clinical outcome using independent cohorts. Our findings indicated that the integrative analysis of development and cancer expression patterns provided a framework for identifying effective molecular signatures for clinical utility.
    Molecular BioSystems 02/2015; DOI:10.1039/c5mb00061k · 3.18 Impact Factor