Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A

Warren Pharmaceuticals, Ossining, NY 10562, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 09/2008; 105(31):10925-30. DOI: 10.1073/pnas.0805594105
Source: PubMed


Erythropoietin (EPO), a member of the type 1 cytokine superfamily, plays a critical hormonal role regulating erythrocyte production as well as a paracrine/autocrine role in which locally produced EPO protects a wide variety of tissues from diverse injuries. Significantly, these functions are mediated by distinct receptors: hematopoiesis via the EPO receptor homodimer and tissue protection via a heterocomplex composed of the EPO receptor and CD131, the beta common receptor. In the present work, we have delimited tissue-protective domains within EPO to short peptide sequences. We demonstrate that helix B (amino acid residues 58-82) of EPO, which faces the aqueous medium when EPO is bound to the receptor homodimer, is both neuroprotective in vitro and tissue protective in vivo in a variety of models, including ischemic stroke, diabetes-induced retinal edema, and peripheral nerve trauma. Remarkably, an 11-aa peptide composed of adjacent amino acids forming the aqueous face of helix B is also tissue protective, as confirmed by its therapeutic benefit in models of ischemic stroke and renal ischemia-reperfusion. Further, this peptide simulating the aqueous surface of helix B also exhibits EPO's trophic effects by accelerating wound healing and augmenting cognitive function in rodents. As anticipated, neither helix B nor the 11-aa peptide is erythropoietic in vitro or in vivo. Thus, the tissue-protective activities of EPO are mimicked by small, nonerythropoietic peptides that simulate a portion of EPO's three-dimensional structure.

Download full-text


Available from: Tiziana Mennini, Oct 05, 2015
1 Follower
27 Reads
  • Source
    • "chronic pHBSP administration in mice (Brines et al., 2008b; Schmidt et al., 2011; Swartjes et al., 2011). This dosage of pHBSP was previously found to induce no change in the hematocrit, hemoglobin concentration and platelet count over a 28-day period of twice daily administration (Brines et al., 2008b). The interval of drug administration was based on published preclinical and clinical data (Heij et al., 2012; Swartjes et al., 2011; van Velzen et al., 2014), which clearly demonstrate that the repetitive (2-day intervals) i.p. administration of pHBSP exerts significant beneficial effects, despite its short half-life (t 1/2 ELIM ∼2 min). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and purpose: The haematopoietic activity of erythropoietin (EPO) is mediated by the classic EPO receptor (EpoR) homodimer, whereas tissue-protective effects are mediated by a heterocomplex between EpoR and the β-common receptor (βcR). Here, we investigated the effects of a novel, selective ligand of this heterocomplex - pyroglutamate helix B surface peptide (pHBSP) - in mice fed a diet enriched in sugars and saturated fats. Experimental approach: Male C57BL/6J mice were fed a high-fat high-sucrose diet (HFHS) for 22 weeks. pHBSP (30 μg·kg(-1) s.c.) was administered for the last 11 weeks. Biochemical assays, histopathological and immunohistochemical examinations and Western blotting were performed on serum and target organs (liver, kidney and skeletal muscle). Key results: Mice fed with HFHS diet exhibited insulin resistance, hyperlipidaemia, hepatic lipid accumulation and kidney dysfunction. In gastrocnemius muscle, HFHS impaired the insulin signalling pathway and reduced membrane translocation of glucose transporter type 4 and glycogen content. Treatment with pHBSP ameliorated renal function, reduced hepatic lipid deposition, and normalized serum glucose and lipid profiles. These effects were associated with an improvement in insulin sensitivity and glucose uptake in skeletal muscle. Diet-induced overproduction of the myokines IL-6 and fibroblast growth factor-21 were attenuated by pHBSP and, most importantly, pHBSP markedly enhanced mitochondrial biogenesis in skeletal muscle. Conclusions and implications: Chronic treatment of mice with an EPO derivative, devoid of haematopoietic effects, improved metabolic abnormalities induced by a high-fat high-sucrose diet, by affecting several levels of the insulin signalling and inflammatory cascades within skeletal muscle, while enhancing mitochondrial biogenesis.
    British Journal of Pharmacology 08/2014; 171(24). DOI:10.1111/bph.12888 · 4.84 Impact Factor
  • Source
    • "However, the protecting effect of EPO in stress situations is rather mediated by the heterodimer of EPO-R and the β-common receptor, called the tissue-protective receptor (TPR), than the homodimeric EPO-R [14]. An EPO-like peptide, exclusively binding to the TPR and not to the EPO-R, has been developed, missing EPOs' effect on hematocrit but still causing protection of the neurovascular unit [15], [16]. In this study we analyze if EPO or EPO-like peptide can safeguard the neuroglialvascular unit in a model of retinal neurodegeneration and secondary vasoregression. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rats expressing a transgenic polycystic kidney disease (PKD) gene develop photoreceptor degeneration and subsequent vasoregression, as well as activation of retinal microglia and macroglia. To target the whole neuroglialvascular unit, neuro- and vasoprotective Erythropoietin (EPO) was intraperitoneally injected into four -week old male heterozygous PKD rats three times a week at a dose of 256 IU/kg body weight. For comparison EPO-like peptide, lacking unwanted side effects of EPO treatment, was given five times a week at a dose of 10 µg/kg body weight. Matched EPO treated Sprague Dawley and water-injected PKD rats were held as controls. After four weeks of treatment the animals were sacrificed and analysis of the neurovascular morphology, glial cell activity and pAkt localization was performed. The number of endothelial cells and pericytes did not change after treatment with EPO or EPO-like peptide. There was a nonsignificant reduction of migrating pericytes by 23% and 49%, respectively. Formation of acellular capillaries was significantly reduced by 49% (p<0.001) or 40% (p<0.05). EPO-treatment protected against thinning of the central retina by 10% (p<0.05), a composite of an increase of the outer nuclear layer by 12% (p<0.01) and in the outer segments of photoreceptors by 26% (p<0.001). Quantification of cell nuclei revealed no difference. Microglial activity, shown by gene expression of CD74, decreased by 67% (p<0.01) after EPO and 36% (n.s.) after EPO-like peptide treatment. In conclusion, EPO safeguards the neuroglialvascular unit in a model of retinal neurodegeneration and secondary vasoregression. This finding strengthens EPO in its protective capability for the whole neuroglialvascular unit.
    PLoS ONE 07/2014; 9(7):e102013. DOI:10.1371/journal.pone.0102013 · 3.23 Impact Factor
  • Source
    • "Our earlier finding that erythropoietin (EPO) has neuroprotective activities in models of brain and spinal cord injury (4) led to the subsequent discovery of protective actions of EPO outside the CNS and to the use of the term tissue-protective cytokine [reviewed in Ref. (5, 6)]. Although this term had since been used for other cytokines (7), it has recently been used to define EPO or EPO-derived molecules, such as carbamylated EPO or EPO-derived peptides (8, 9). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of the tissue-protective activities of erythropoietin (EPO) has underlined the importance of some cytokines in tissue-protection, repair, and remodeling. As such activities have been reported for other cytokines, we asked whether we could define a class of tissue-protective cytokines. We therefore explored a novel approach based on functional clustering. In this pilot study, we started by analyzing a small number of cytokines (30). We functionally classified the 30 cytokines according to their interactions by using the bioinformatics tool STRING (Search Tool for the Retrieval of Interacting Genes), followed by hierarchical cluster analysis. The results of this functional clustering were different from those obtained by clustering cytokines simply according to their sequence. We previously reported that the protective activity of EPO in a model of cerebral ischemia was paralleled by an upregulation of synaptic plasticity genes, particularly early growth response 2 (EGR2). To assess the predictivity of functional clustering, we tested some of the cytokines clustering close to EPO (interleukin-11, IL-11; kit ligand, KITLG; leukemia inhibitory factor, LIF; thrombopoietin, THPO) in an in vitro model of human neuronal cells for their ability to induce EGR2. Two of these, LIF and IL-11, induced EGR2 expression. Although these data would need to be extended to a larger number of cytokines and the biological validation should be done using more robust in vivo models, rather then just one cell line, this study shows the feasibility of this approach. This type of functional cluster analysis could be extended to other fields of cytokine research and help design biological experiments.
    Frontiers in Immunology 03/2014; 5:115. DOI:10.3389/fimmu.2014.00115
Show more