Article

Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin.

Warren Pharmaceuticals, Ossining, NY 10562, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2008; 105(31):10925-30. DOI: 10.1073/pnas.0805594105
Source: PubMed

ABSTRACT Erythropoietin (EPO), a member of the type 1 cytokine superfamily, plays a critical hormonal role regulating erythrocyte production as well as a paracrine/autocrine role in which locally produced EPO protects a wide variety of tissues from diverse injuries. Significantly, these functions are mediated by distinct receptors: hematopoiesis via the EPO receptor homodimer and tissue protection via a heterocomplex composed of the EPO receptor and CD131, the beta common receptor. In the present work, we have delimited tissue-protective domains within EPO to short peptide sequences. We demonstrate that helix B (amino acid residues 58-82) of EPO, which faces the aqueous medium when EPO is bound to the receptor homodimer, is both neuroprotective in vitro and tissue protective in vivo in a variety of models, including ischemic stroke, diabetes-induced retinal edema, and peripheral nerve trauma. Remarkably, an 11-aa peptide composed of adjacent amino acids forming the aqueous face of helix B is also tissue protective, as confirmed by its therapeutic benefit in models of ischemic stroke and renal ischemia-reperfusion. Further, this peptide simulating the aqueous surface of helix B also exhibits EPO's trophic effects by accelerating wound healing and augmenting cognitive function in rodents. As anticipated, neither helix B nor the 11-aa peptide is erythropoietic in vitro or in vivo. Thus, the tissue-protective activities of EPO are mimicked by small, nonerythropoietic peptides that simulate a portion of EPO's three-dimensional structure.

1 Bookmark
 · 
156 Views
  • Diabetes 07/2014; 63(7):2229-31. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Helix B surface peptide (HBSP), derived from erythropoietin, displays powerful tissue protection during kidney ischemia reperfusion (IR) injury without erythropoietic side effects. We employed cyclization strategy for the first time, and synthesized thioether-cyclized helix B peptide (CHBP) to improve metabolic stability and renoprotective effect. LC–MS/MS analysis was adopted to examine the stability of CHBP in vitro and in vivo. The renoprotective effect of CHBP in terms of renal function, apoptosis, inflammation, extracellular matrix deposition, and histological injury were also detected in vivo and in vitro. Antibody array and western blot were performed to analyze the signal pathway of involvement by CHBP in the IR model and renal tubular epithelial cells. In this study, thioether-cyclized peptide was significantly stable in vivo and in vitro. One dose of 8 nmol/kg CHBP administered intraperitoneally at the onset of reperfusion improved renal protection compared with three doses of 8 nmol/kg linear HBSP in a 48 h murine IR model. In a one-week model, the one dose CHBP-treated group exhibited remarkably improved renal function over the IR group, and attenuated kidney injury, including reduced inflammation and apoptosis. Interestingly, we found that the phosphorylation of autophagy protein mTORC1 was dramatically reduced upon CHBP treatment. We also demonstrated that CHBP induced autophagy via inhibition of mTORC1 and activation of mTORC2, leading to renoprotective effects on IR. Our results indicate that the novel metabolically stable CHBP is a promising therapeutic medicine for kidney IR injury treatment.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 11/2014; · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rats expressing a transgenic polycystic kidney disease (PKD) gene develop photoreceptor degeneration and subsequent vasoregression, as well as activation of retinal microglia and macroglia. To target the whole neuroglialvascular unit, neuro- and vasoprotective Erythropoietin (EPO) was intraperitoneally injected into four -week old male heterozygous PKD rats three times a week at a dose of 256 IU/kg body weight. For comparison EPO-like peptide, lacking unwanted side effects of EPO treatment, was given five times a week at a dose of 10 µg/kg body weight. Matched EPO treated Sprague Dawley and water-injected PKD rats were held as controls. After four weeks of treatment the animals were sacrificed and analysis of the neurovascular morphology, glial cell activity and pAkt localization was performed. The number of endothelial cells and pericytes did not change after treatment with EPO or EPO-like peptide. There was a nonsignificant reduction of migrating pericytes by 23% and 49%, respectively. Formation of acellular capillaries was significantly reduced by 49% (p<0.001) or 40% (p<0.05). EPO-treatment protected against thinning of the central retina by 10% (p<0.05), a composite of an increase of the outer nuclear layer by 12% (p<0.01) and in the outer segments of photoreceptors by 26% (p<0.001). Quantification of cell nuclei revealed no difference. Microglial activity, shown by gene expression of CD74, decreased by 67% (p<0.01) after EPO and 36% (n.s.) after EPO-like peptide treatment. In conclusion, EPO safeguards the neuroglialvascular unit in a model of retinal neurodegeneration and secondary vasoregression. This finding strengthens EPO in its protective capability for the whole neuroglialvascular unit.
    PLoS ONE 07/2014; 9(7):e102013. · 3.53 Impact Factor

Full-text (2 Sources)

Download
45 Downloads
Available from
May 27, 2014