Article

Growth characteristics of infantile hemangiomas: Implications for management

Department of Dermatology, University of California, San Francisco, California, USA.
PEDIATRICS (Impact Factor: 5.3). 09/2008; 122(2):360-7. DOI: 10.1542/peds.2007-2767
Source: PubMed

ABSTRACT Infantile hemangiomas often are inapparent at birth and have a period of rapid growth during early infancy followed by gradual involution. More precise information on growth could help predict short-term outcomes and make decisions about when referral or intervention, if needed, should be initiated. The objective of this study was to describe growth characteristics of infantile hemangioma and compare growth with infantile hemangioma referral patterns.
A prospective cohort study involving 7 tertiary care pediatric dermatology practices was conducted. Growth data were available for a subset of 526 infantile hemangiomas in 433 patients from a cohort study of 1096 children. Inclusion criteria were age younger than 18 months at time of enrollment and presence of at least 1 infantile hemangioma. Growth stage and rate were compared with clinical characteristics and timing of referrals.
Eighty percent of hemangioma size was reached during the early proliferative stage at a mean age of 3 months. Differences in growth between hemangioma subtypes included that deep hemangiomas tend to grow later and longer than superficial hemangiomas and that segmental hemangiomas tended to exhibit more continued growth after 3 months of age. The mean age of first visit was 5 months. Factors that predicted need for follow-up included ongoing proliferation, larger size, deep component, and segmental and indeterminate morphologic subtypes.
Most infantile hemangioma growth occurs before 5 months, yet 5 months was also the mean age at first visit to a specialist. Recognition of growth characteristics and factors that predict the need for follow-up could help aid in clinical decision-making. The first few weeks to months of life are a critical time in hemangioma growth. Infants with hemangiomas need close observation during this period, and those who need specialty care should be referred and seen as early as possible within this critical growth period.

1 Follower
 · 
244 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The serendipitous demonstration that the nonselective β-adrenergic receptor (β-AR) antagonist propranolol promotes the regression of infantile hemangiomas (IHs) aroused interest around the involvement of the β-adrenergic system in angiogenic processes. The efficacy of propranolol was related to the β2-AR blockade and the consequent inhibition of the production of vascular endothelial growth factor (VEGF), suggesting the hypothesis that propranolol could also be effective in treating retinopathy of prematurity (ROP), a retinal pathology characterized by VEGF-induced neoangiogenesis. Consequent to the encouraging animal studies, a pilot clinical trial showed that oral propranolol protects newborns from ROP progression, even though this treatment is not sufficiently safe. Further, animal studies clarified the role of β3-ARs in the development of ROP and, together with several preclinical studies demonstrating the key role of the β-adrenergic system in tumor progression, vascularization, and metastasis, prompted us to also investigate the participation of β3-ARs in tumor growth. The aim of this review is to gather the recent findings on the role of the β-adrenergic system in IHs, ROP, and cancer, highlighting the fact that these different pathologies, triggered by different pathogenic noxae, share common pathogenic mechanisms characterized by the presence of hypoxia-induced angiogenesis, which may be contrasted by targeting the β-adrenergic system. The mechanisms characterizing the pathogenesis of IHs, ROP, and cancer may also be active during the fetal–neonatal development, and a great contribution to the knowledge on the role of β-ARs in diseases characterized by chronic hypoxia may come from research focusing on the fetal and neonatal period.
    Medicinal Research Reviews 12/2014; DOI:10.1002/med.21336 · 8.13 Impact Factor
  • British Journal of Dermatology 02/2015; 172(2):319-20. DOI:10.1111/bjd.13600 · 4.10 Impact Factor

Preview

Download
1 Download