A Slit in Podocyte Death

Renal and Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma, de Madrid and IRSIN, Madrid, Spain.
Current Medicinal Chemistry (Impact Factor: 3.85). 02/2008; 15(16):1645-54. DOI: 10.2174/092986708784911542
Source: PubMed


Recent advances have identified the podocyte as a key target in glomerular injury. The podocyte is a highly specialized cell which is responsible for the glomerular permselectivity for proteins in the kidney. Podocyte injury or loss leads to proteinuria. Apoptosis has been shown to contribute to renal cell loss, including loss of podocytes. The most striking feature of the podocyte is its ability to form intricate specialized cell junctions, the slit diaphragm. Slit diaphragm proteins play an important role in podocyte biology, protein permselectivity, cell signalling and disease. This review focuses on recent advances on the understanding of podocyte survival regulation, its relationship to slit diaphragm structure and function, and how this knowledge may affect our therapeutic approach to proteinuric kidney disease.

1 Follower
8 Reads
  • Source
    • "Podocytes are specialized epithelial cells that contribute critically to the kidney’s “filtration apparatus”. Podocyte dysfunction and/or damage has been associated with both acute and chronic glomerular diseases including focal segmental glomerulosclerosis, diabetic nephropathy and HIV nephropathy (1, 2, 3, 4–6). Podocyte depletion leads to glomerulosclerosis in murine models and recent studies suggest that short-lived localized insults can trigger a cascade of secondary damage that causes more global injury (7–9). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Podocytes are specialized cells that contribute critically to the normal structure and function of the glomerular filtration barrier. Their depletion plays an important role in the pathogenesis of glomerulosclerosis. Here, we report generation of a genetic model of conditional podocyte ablation and regeneration in zebrafish using a bacterial nitroreductase strategy to convert a prodrug, metronidazole, into a cytotoxic metabolite. A transgenic zebrafish line was generated that expresses green fluorescence protein (GFP) and the nitroreductase fusion protein under the control of the podocin promoter Tg(podocin:nitroreductase-GFP). Treatment of these transgenic zebrafish with metronidazole results in podocyte apoptosis, a loss of nephrin and podocin expression, foot process effacement, and a leaky glomerular filtration barrier. Following metronidazole washout, proliferating cells were detected in the glomeruli of recovering transgenic fish with a restoration of nitroreductase-GFP fluorescence, nephrin and podocin expression, a reestablishment of normal foot process architecture, and glomerular barrier function. Thus, our studies show that zebrafish podocytes are capable of regenerating following depletion, and establish the Tg(podocin:NTR-GFP) fish as a new model to study podocyte injury and repair.Kidney International advance online publication, 6 March 2013; doi:10.1038/ki.2013.6.
    Kidney International 03/2013; 83(6). DOI:10.1038/ki.2013.6 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus is a multifactorial disease, classically influenced by genetic determinants of individual susceptibility and by environmental accelerating factors, such as lifestyle. It is considered a major health concern,as its incidence is increasing at an alarming rate, and the high invalidating effects of its long-term complications affect macro- and microvasculature, heart, kidney, eye, and nerves. Increasing evidence indicates that hyperglycemia is the initiating cause of the tissue damage occurring in diabetes, either through repeated acute changes in cellular glucose metabolism, or through the long-term accumulation of glycated biomolecules and advanced glycation end products (AGEs). AGEs represent a heterogeneous group of chemical products resulting from a nonenzymatic reaction between reducing sugars and proteins, lipids, nucleic acids, or a combination of these.The glycation process (glucose fixation) affects circulating proteins (serum albumin, lipoprotein, insulin, hemoglobin),whereas the formation of AGEs implicates reactive intermediates such as methylglyoxal. AGEs form cross-links on long-lived extracellular matrix proteins or react with their specific receptor RAGE, resulting inoxidative stress and proinflammatory signaling implicated in endothelium dysfunction, arterial stiffening, and microvascular complications. This review summarizes the mechanism of glycation and of AGEs formation and the role of hyperglycemia, AGEs, and oxidative stress in the pathophysiology of diabetic complications.
    Antioxidants & Redox Signaling 07/2009; 11(12):3071-109. DOI:10.1089/ARS.2009.2484 · 7.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal kidney structure and function The kidneys maintain the homeostasis of electrolyte, fluid, and acid– base balance; eliminate waste products; and have an endocrine-metabolic function. They secrete hormones such as erythropoietin, Klotho, and 1, 25-(OH)2-vitamin D and clear other hormones and cytokines. Each kidney contains 1 million basic functional units, or nephrons. Each nephron is composed of a glomerulus and a renal tubule. The glomerulus is a tightly woven, highly permeable capillary bed, surrounded by differentiated, very specialized cells, the podocytes. The mesangium contains mesangial cells and holds the capillaries together. Every day, 180 L of plasma is filtered through the glomeruli. Podocytes prevent the filtration of proteins, and their injury will lead to pathological urinary protein excretion (proteinuria). Podocytes do not divide, and podocyte loss causes podocytopenia, an early event in progressive glomerular scarring. Tubular cells reabsorb most of the filtered fluid and nutrients, and only 1 to 2 L of urine is excreted. Proximal tubular cells are responsible for the bulk of reabsorption. They are rich in mitochondria, consume high amounts of energy, and express a variety of transporters that favor the uptake of nephrotoxins. Thus they are prime targets in toxic and ischemic renal injury.
Show more

Similar Publications