Article

MRI measures of temporoparietal regions show differential rates of atrophy during prodromal AD

Dept. of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
Neurology (Impact Factor: 8.3). 10/2008; 71(11):819-25. DOI: 10.1212/01.wnl.0000320055.57329.34
Source: PubMed

ABSTRACT MRI studies have demonstrated differential rates of atrophy in the entorhinal cortex and hippocampus during the prodromal phase of Alzheimer disease (AD). The current study was designed to determine whether a broader set of temporoparietal regions show differential rates of atrophy during the evolution of AD.
Sixteen regions of interest (ROIs) were analyzed on MRI scans obtained at baseline and follow-up in 66 subjects comprising three groups: controls = individuals who were cognitively normal at both baseline and follow-up; nonconverters = subjects with mild cognitive impairment (MCI) at both baseline and follow-up; converters had MCI at baseline but had progressed to AD at follow-up.
Annualized percent change was analyzed with multivariate analysis of variance (MANOVA), covaried for age. The MANOVA demonstrated an effect of group (p = 0.004). Post hoc comparisons demonstrated greater rates of atrophy for converters vs nonconverters for six ROIs: hippocampus, entorhinal cortex, temporal pole, middle temporal gyrus, fusiform gyrus, and inferior temporal gyrus. Converters showed differentially greater rates of atrophy than controls in five of the same ROIs (and inferior parietal lobule). Rates of change in clinical status were correlated with the atrophy rates in these regions. Comparisons between controls and nonconverters demonstrated no differences.
These results demonstrate that temporoparietal regions show differential rates of atrophy on MRI during prodromal Alzheimer disease (AD). MRI data correlate with measures of clinical severity and cognitive decline, suggesting the potential of these regions of interest as antemortem markers of prodromal AD.

0 Followers
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to characterize the neuropsychological and neuroimaging profiles of mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients, and to study the magnitude of the differences by comparing both outcomes with healthy subjects in a cross-sectional manner. Five hundred and thirty-five subjects (356 cognitively normal adults (CONT), 79 MCI, and 100 AD) were assessed with the NEURONORMA neuropsychological battery. Thirty CONT, 23 MCI, and 23 AD subjects from this sample were included in the neuroimaging substudy. Patients' raw cognitive scores were converted to age and education-adjusted scaled ones (range 2-18) using co-normed reference values. Medians were plotted to examine the cognitive profile. MRIs were processed by means of FreeSurfer. Effect size indices (Cohen's d) were calculated in order to compare the standardized differences between patients and healthy subjects. Graphically, the observed cognitive profiles for MCI and AD groups produced near to parallel lines. Verbal and visual memories were the most impaired domains in both groups, followed by executive functions and linguistic/semantic ones. The largest effect size between AD and cognitively normal subjects was found for the FCSRT (d = 4.05, AD versus CONT), which doubled the value obtained by the best MRI measure, the right hippocampus (d = 1.65, AD versus CONT). Our results support the notion of a continuum in cognitive profile between MCI and AD. Neuropsychological outcomes, in particular the FCSRT, are better than neuroimaging ones at detecting differences among subjects.
    Journal of Alzheimer's disease: JAD 04/2014; 41(3). DOI:10.3233/JAD-132186 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in several regions within the brain have been associated with progression from healthy aging to Alzheimer's disease (AD), including the hippocampus, entorhinal cortex, and the inferior parietal lobule (IPL). In this study, the IPL was divided into three subregions: the gyrus, the banks of the sulcus, and the fundus to determine if these regions are independent of medial temporal regions in the progression of AD. Participants of the Alzheimer's disease Neuroimaging Initiative (Alzheimer's disease Neuroimaging initiative (ADNI); n = 54) underwent a structural magnetic resonance imaging (MRI) scan and neuropsychological examination, and were categorized as normal controls, mild cognitively impaired (MCI), or AD. FreeSurfer was initially used to identify the boundaries of the IPL. Each subregion was then manually traced based on FreeSurfer curvature intensities. Multivariate analyses of variance were used to compare groups. Results suggest that changes in thickness of the banks of the inferior parietal lobule are occurring early in the progression from normal to MCI, followed by changes in the gyrus and fundus, and these measures are related to neuropsychological performance.
    Neurobiology of aging 08/2010; 31(8):1304-11. DOI:10.1016/j.neurobiolaging.2010.04.026 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously it was reported that Alzheimer's disease (AD) patients have reduced beta amyloid (Abeta(1-42)) and elevated total tau (t-tau) and phosphorylated tau (p-tau(181p)) in the cerebrospinal fluid (CSF), suggesting that these same measures could be used to detect early AD pathology in healthy elderly individuals and those with mild cognitive impairment (MCI). In this study, we tested the hypothesis that there would be an association among rates of regional brain atrophy, the CSF biomarkers Abeta(1-42), t-tau, and p-tau(181p) and apolipoprotein E (ApoE) epsilon4 status, and that the pattern of this association would be diagnosis-specific. Our findings primarily showed that lower CSF Abeta(1-42) and higher tau concentrations were associated with increased rates of regional brain tissue loss and the patterns varied across the clinical groups. Taken together, these findings demonstrate that CSF biomarker concentrations are associated with the characteristic patterns of structural brain changes in healthy elderly and mild cognitive impairment subjects that resemble to a large extent the pathology seen in AD. Therefore, the finding of faster progression of brain atrophy in the presence of lower Abeta(1-42) levels and higher tau levels supports the hypothesis that CSF Abeta(1-42) and tau are measures of early AD pathology. Moreover, the relationship among CSF biomarkers, ApoE epsilon4 status, and brain atrophy rates are regionally varying, supporting the view that the genetic predisposition of the brain to beta amyloid and tau mediated pathology is regional and disease stage specific.
    Neurobiology of aging 08/2010; 31(8):1340-54. DOI:10.1016/j.neurobiolaging.2010.04.030 · 4.85 Impact Factor

Preview

Download
3 Downloads
Available from