The effect of long-term insulin treatment with and without antecedent hypoglycemia on neuropeptide and corticosteroid receptor expression in the brains of diabetic rats

University of Toronto - Department of Physiology, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
Brain research bulletin (Impact Factor: 2.72). 08/2008; 77(4):149-57. DOI: 10.1016/j.brainresbull.2008.07.001
Source: PubMed


We previously demonstrated that while diabetic animals receiving long-term insulin treatment exhibited some impairment in their corticosterone response to hypoglycemia, the stress response to hypoglycemia was completely absent when these animals were subjected to recurrent hypoglycemia. In the current study, we examined potential mechanisms that may contribute to defects in the adrenocortical response to hypoglycemia in long-term insulin-treated diabetic animals exposed to antecedent hypoglycemia. Whereas insulin-treated diabetic animals exhibited a significant rise in corticotrophin-releasing hormone (CRH) mRNA levels during hypoglycemia, exposure to antecedent hypoglycemia completely abolished this response. Moreover, expression of hippocampal mineralocorticoid receptors (MR) mRNA, which normally act to suppress hypothalamo-pituitary-adrenal activity, decreased in the normal control and insulin-treated diabetic groups in response to hypoglycemia, whereas MR mRNA levels remained at baseline in animals subjected to antecedent hypoglycemia. Interestingly, hippocampal glucocorticoid receptor (GR) mRNA levels decreased in all three treatment groups following the hypoglycemic clamp. While GR mRNA levels in the paraventricular nucleus were lower in normal controls following hypoglycemia, this trend just failed to reach statistical significance in the two diabetic groups. These data suggest that (1) recurrent hypoglycemia, much like uncontrolled diabetes, has a pronounced effect on hippocampal mineralocorticoid receptor mRNA expression that may prevent it, and presumably also the stress axis, from responding properly to a subsequent bout of hypoglycemia, and (2) while long-term insulin treatment was sufficient to restore some of these responses in diabetic animals, tighter glycemic control may be necessary to see full restoration of the stress response.

3 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is a metabolic disorder that is associated with the dysregulation of a number of systems within the body. In the present study, we investigated glucocorticoid receptor (GR) immunoreactivity and its protein levels in the paraventricular nuclei of 4-, 12-, 20- and 30-week-old Zucker diabetic fatty (fa/fa, ZDF) and in Zucker lean control (fa/+ or +/+, ZLC) rats, because the progressive induction of diabetes is detectable in this model after 7 weeks of age and chronic diabetic conditions are maintained after 12 weeks of age. GR immunoreactivity was detected in parvocellular paraventricular nuclei and this and GR protein levels were exponentially increased according to the ages. In particular, GR immunoreactivities and protein levels were markedly more increased in 30-week-old ZDF rats than in age-matched ZLC group and in younger ZDF group. The present study suggests that GR immunoreactivity and its protein level is associated with a degenerative phenotype in the hypothalamus of from 12-weeks old in the ZDF rat type II diabetes model.
    Neurochemical Research 09/2008; 34(5):851-8. DOI:10.1007/s11064-008-9836-0 · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The counterregulatory response to hypoglycemia is a complex and well-coordinated process. As blood glucose concentration declines, peripheral and central glucose sensors relay this information to central integrative centers to coordinate neuroendocrine, autonomic, and behavioral responses and avert the progression of hypoglycemia. Diabetes, both type 1 and type 2, can perturb these counterregulatory responses. Moreover, defective counterregulation in the setting of diabetes can progress to hypoglycemia unawareness. While the mechanisms that underlie the development of hypoglycemia unawareness are not completely known, possible causes include altered sensing of hypoglycemia by the brain and/or impaired coordination of responses to hypoglycemia. Further study is needed to better understand the intricacies of the counterregulatory response and the mechanisms contributing to the development of hypoglycemia unawareness.
    Annals of the New York Academy of Sciences 10/2010; 1212(1):12-28. DOI:10.1111/j.1749-6632.2010.05820.x · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This research perspective allows me to summarize some of my work completed over 50 years, and it is organized in seven sections. 1) The treatment of diabetes concentrates on the liver and/or the periphery. We quantified hormonal and metabolic interactions involved in physiology and the pathogenesis of diabetes by developing tracer methods to separate the effects of diabetes on both. We collaborated in the first tracer clinical studies on insulin resistance, hypertriglyceridemia, and the Cori cycle. 2) Diabetes reflects insulin deficiency and glucagon abundance. Extrapancreatic glucagon changed the prevailing dogma and permitted precise exploration of the roles of insulin and glucagon in physiology and diabetes. 3) We established the critical role of glucagon-insulin interaction and the control of glucose metabolism during moderate exercise and of catecholamines during strenuous exercise. Deficiencies of the release and effects of these hormones were quantified in diabetes. We also revealed how acute and chronic hyperglycemia affects the expression of GLUT2 gene and protein in diabetes. 4) We outlined molecular and physiological mechanisms whereby exercise training and repetitive neurogenic stress can prevent diabetes in ZDF rats. 5) We and others established that the indirect effect of insulin plays an important role in the regulation of glucose production in dogs. We confirmed this effect in humans and demonstrated that in type 2 diabetes it is mainly the indirect effect. 6) We indicated that the muscle and the liver protected against glucose changes. 7) We described molecular mechanisms responsible for increased HPA axis in diabetes and for the diminished responses of HPA axis, catecholamines, and glucagon to hypoglycemia. We proposed a new approach to decrease the threat of hypoglycemia.
    AJP Endocrinology and Metabolism 12/2010; 299(6):E849-67. DOI:10.1152/ajpendo.00344.2010 · 3.79 Impact Factor

Similar Publications