Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis.

Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA.
BMC Immunology (Impact Factor: 2.61). 02/2008; 9:43. DOI: 10.1186/1471-2172-9-43
Source: PubMed

ABSTRACT To evaluate the impact of the duration of chronic inflammation on gene expression in skeletal muscle biopsies (MBx) from untreated children with juvenile dermatomyositis (JDM) and identify genes and biological processes associated with the disease progression, expression profiling data from 16 girls with active symptoms of JDM greater than or equal to 2 months were compared with 3 girls with active symptoms less than 2 months.
Seventy-nine genes were differentially expressed between the groups with long or short duration of untreated disease. Genes involved in immune responses and vasculature remodelling were expressed at a higher level in muscle biopsies from children with greater or equal to 2 months of symptoms, while genes involved in stress responses and protein turnover were expressed at a lower level. Among the 79 genes, expression of 9 genes showed a significant linear regression relationship with the duration of untreated disease. Five differentially expressed genes--HLA-DQA1, smooth muscle myosin heavy chain, clusterin, plexin D1 and tenomodulin--were verified by quantitative RT-PCR. The chronic inflammation of longer disease duration was also associated with increased DC-LAMP+ and BDCA2+ mature dendritic cells, identified by immunohistochemistry.
We conclude that chronic inflammation alters the gene expression patterns in muscle of untreated children with JDM. Symptoms lasting greater or equal to 2 months were associated with dendritic cell maturation and anti-angiogenic vascular remodelling, directly contributing to disease pathophysiology.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Once activated by an infected pathogen, dendritic cells (DC's) migrate toward secondary lymphoid organs, and release inflammatory mediators. Therefore, in some case, mature DC's (mDC's) are considered to be potent inflammatory inducers. In this study we demonstrated that histone acetylation plays an important regulatory role in conserving the migration activity of the DC's. We showed that histone deacetylase (HDAC) inhibition reduces CXC chemokine receptor 4 (CXCR4)-dependent DC's migration. These inhibitory effects were found to be caused by a reduction in the expression of CXCR4, and by the phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and c-Jun N-terminal kinase (JNK). Taken together, histone deacetylase inhibitors (HDACi's) inhibit the phosphorylation of MAP kinases, and this inhibition reduces the expression of CXCR4, and this reduction decreases the chemotactic activity of mDC's.
    Cellular Immunology 08/2013; 284(1-2):139-145. · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 'Neuroinflammation' has become a widely applied term in the basic and clinical neurosciences but there is no generally accepted neuropathological tissue correlate. Inflammation, which is characterized by the presence of perivascular infiltrates of cells of the adaptive immune system, is indeed seen in the central nervous system (CNS) under certain conditions. Authors who refer to microglial activation as neuroinflammation confuse this issue because autoimmune neuroinflammation serves as a synonym for multiple sclerosis, the prototypical inflammatory disease of the CNS. We have asked the question whether a data-driven, unbiased in silico approach may help to clarify the nomenclatorial confusion. Specifically, we have examined whether unsupervised analysis of microarray data obtained from human cerebral cortex of Alzheimer's, Parkinson's and schizophrenia patients would reveal a degree of relatedness between these diseases and recognized inflammatory conditions including multiple sclerosis. Our results using two different data analysis methods provide strong evidence against this hypothesis demonstrating that very different sets of genes are involved. Consequently, the designations inflammation and neuroinflammation are not interchangeable. They represent different categories not only at the histophenotypic but also at the transcriptomic level. Therefore, non-autoimmune neuroinflammation remains a term in need of definition.
    Neurogenetics 06/2014; · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective To evaluate the effect of duration of untreated disease on vascular cell adhesion molecule 1 (VCAM-1) and microRNA (miRNA) expression in muscle biopsy samples from children with juvenile dermatomyositis (DM) as well as its effect on soluble VCAM-1 (sVCAM-1) and tumor necrosis factor α (TNFα) concentrations in sera from these children. Methods We enrolled 28 untreated children with juvenile DM and 8 pediatric controls. Eleven children with juvenile DM had short duration of untreated disease (symptoms for ≤2 months before muscle biopsy), and 17 had long duration of untreated disease (symptoms for >2 months before muscle biopsy). Vascular structures, characterized by immunofluorescence using antibodies against von Willebrand factor, VCAM-1, and α-smooth muscle actin, were measured for total area and intensity. Circulating sVCAM-1 and TNFα levels were determined in patients with short duration of untreated disease, patients with long duration of untreated disease, and controls. Differential expression of microRNA-126 (miR-126) in muscle biopsy samples from the 2 patient groups and the control group was detected by miRNA expression profiling and confirmed by quantitative reverse transcription–polymerase chain reaction in muscle biopsy samples from the 3 groups. ResultsJuvenile DM patients with short duration of untreated disease had significantly higher total positive area and intensity/high power field of VCAM-1 expression than did juvenile DM patients with long duration of untreated disease (P = 0.043 and P = 0.015, respectively) or controls (P = 0.004 and P = 0.001, respectively). Von Willebrand factor antigen–positive vasculature displayed greater VCAM-1 intensity in patients with short duration of untreated disease than in patients with long duration of untreated disease (P = 0.001). Circulating levels of sVCAM-1 and TNFα were significantly higher in patients with short duration of untreated disease than in controls (P = 0.013 and P = 0.048, respectively). The miRNA miR-126, a negative regulator of VCAM-1 expression, was significantly decreased (3.39-fold; P < 0.006) in patients with short duration of untreated disease compared to controls, while miR-126 expression in patients with long duration of untreated disease did not differ significantly compared to controls. Conclusion In patients with short duration of untreated disease, miR-126 down-regulation is associated with increased VCAM-1 in both muscle and blood, suggesting that VCAM-1 plays a critical role early in juvenile DM disease pathophysiology, augmented by TNFα.
    Arthritis & Rheumatology 11/2012; 64(11). · 7.48 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014