The influence of visual perturbations on the neural control of limb stiffness.

Department of Psychology, The University of Western Ontario, 1151 Richmond St., London, Ontario, Canada N6A 5C2.
Journal of Neurophysiology (Impact Factor: 3.3). 08/2008; 101(1):246-57. DOI: 10.1152/jn.90371.2008
Source: PubMed

ABSTRACT To adapt to novel unstable environments, the motor system modulates limb stiffness to produce selective increases in arm stability. The motor system receives information about the environment via somatosensory and proprioceptive signals related to the perturbing forces and visual signals indicating deviations from an expected hand trajectory. Here we investigated whether subjects modulate limb stiffness during adaptation to a purely visual perturbation. In a first experiment, measurements of limb stiffness were taken during adaptation to an elastic force field (EF). Observed changes in stiffness were consistent with previous reports: subjects increased limb stiffness and did so only in the direction of the environmental instability. In a second experiment, stiffness changes were measured during adaptation to a visual perturbing environment that magnified hand-path deviations in the lateral direction. In contrast to the first experiment, subjects trained in this visual task showed no accompanying change in stiffness, despite reliable improvements in movement accuracy. These findings suggest that this sort of visual information alone may not be sufficient to engage neural systems for stiffness control, which may depend on sensory signals more directly related to perturbing forces, such as those arising from proprioception and somatosensation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans are able to learn tool-handling tasks, such as carving, demonstrating their competency to make movements in unstable environments with varied directions. When faced with a single direction of instability, humans learn to selectively co-contract their arm muscles tuning the mechanical stiffness of the limb end point to stabilize movements. This study examines, for the first time, subjects simultaneously adapting to two distinct directions of instability, a situation that may typically occur when using tools. Subjects learned to perform reaching movements in two directions, each of which had lateral instability requiring control of impedance. The subjects were able to adapt to these unstable interactions and switch between movements in the two directions; they did so by learning to selectively control the end-point stiffness counteracting the environmental instability without superfluous stiffness in other directions. This finding demonstrates that the central nervous system can simultaneously tune the mechanical impedance of the limbs to multiple movements by learning movement-specific solutions. Furthermore, it suggests that the impedance controller learns as a function of the state of the arm rather than a general strategy.
    Journal of Neurophysiology 08/2011; 106(5):2737-48. · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.
    PLoS ONE 01/2012; 7(3):e33086. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a voluntary movement, the nervous system specifies not only the motor commands but also the gains associated with reaction to sensory feedback. For example, suppose that, during reaching, a perturbation tends to push the hand to the left. With practice, the brain not only learns to produce commands that predictively compensate for the perturbation but also increases the long-latency reflex gain associated with leftward displacements of the arm. That is, the brain learns a feedback controller. Here, we wondered whether, during the preparatory period before the reach, the brain engaged this feedback controller in anticipation of the upcoming movement. If so, its signature might be present in how the motor system responds to perturbations in the preparatory period. Humans trained on a reach task in which they adapted to a force field. During the preparatory period before the reach, we measured how the arm responded to a pulse to the hand that was either in the direction of the upcoming field, or in the opposite direction. Reach adaptation produced an increase in the long-latency (45-100 ms delay) feedback gains with respect to baseline, but only for perturbations that were in the same direction as the force field that subjects expected to encounter during the reach. Therefore, as the brain prepares for a reach, it loads a feedback controller specific to the upcoming reach. With adaptation, this feedback controller undergoes a change, increasing the gains for the expected sensory feedback.
    Journal of Neuroscience 07/2012; 32(28):9537-45. · 6.91 Impact Factor


Available from