The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability.

Centro Andaluz de Biologia Molecular y Medicina Regenerativa, Universidad de Sevilla-CSIC, 41092 Sevilla, Spain.
Molecular biology of the cell (Impact Factor: 5.98). 08/2008; 19(10):4310-8. DOI: 10.1091/mbc.E08-04-0355
Source: PubMed

ABSTRACT The eukaryotic THO/TREX complex, involved in mRNP biogenesis, plays a key role in the maintenance of genome integrity in yeast. mRNA export factors such as Thp1-Sac3 also affect genome integrity, but their mutations have other phenotypes different from those of THO/TREX. Sus1 is a novel component of SAGA transcription factor that also associates with Thp1-Sac3, but little is known about its effect on genome instability and transcription. Here we show that Thp1, Sac3, and Sus1 form a functional unit with a role in mRNP biogenesis and maintenance of genome integrity that is independent of SAGA. Importantly, the effects of ribozyme-containing transcription units, RNase H, and the action of human activation-induced cytidine deaminase on transcription and genome instability are consistent with the possibility that R-loops are formed in Thp1-Sac3-Sus1-Cdc31 as in THO mutants. Our data reveal that Thp1-Sac3-Sus1-Cdc31, together with THO/TREX, define a specific pathway connecting transcription elongation with export via an RNA-dependent dynamic process that provides a feedback mechanism for the control of transcription and the preservation of genetic integrity of transcribed DNA regions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013.
    PLoS Genetics 04/2014; 10(4):e1004288. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell.
    DNA repair 04/2014; · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The THSC/TREX-2 complex of Saccharomyces cerevisiae mediates the anchoring of transcribed genes to the nuclear pore, linking transcription elongation with mRNA export and genome stability, as shown for specific reporters. However, it is still unknown whether the function of TREX-2 is global and the reason for its relevant role in genome integrity. Here, by studying two TREX-2 representative subunits, Thp1 and Sac3, we show that TREX-2 has a genome-wide role in gene expression. Both proteins show similar distributions along the genome, with a gradient disposition at active genes that increases towards the 3' end. Thp1 and Sac3 have a relevant impact on the expression of long, G+C-rich and highly transcribed genes. Interestingly, replication impairment detected by the genome-wide accumulation of the replicative Rrm3 helicase is increased preferentially at highly expressed genes in the thp1Δ and sac3Δ mutants analyzed. Therefore, our work provides evidence of a function of TREX-2 at the genome-wide level and suggests a role for TREX-2 in preventing transcription-replication conflicts, as a source of genome instability derived from a defective messenger ribonucleoprotein particle (mRNP) biogenesis.
    Nucleic Acids Research 10/2014; · 8.81 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014