Mixed-mode reversed-phase and ion-exchange monolithic columns for micro-HPLC.

Pharmaceutical Sciences Research Division, King's College London, London, UK.
Journal of Separation Science (Impact Factor: 2.59). 09/2008; 31(15):2774-83. DOI: 10.1002/jssc.200800124
Source: PubMed

ABSTRACT This paper describes the fabrication of RP/ion-exchange mixed-mode monolithic materials for capillary LC. Following deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (gamma-MAPS), monoliths were formed by copolymerisation of pentaerythritol diacrylate monostearate (PEDAS), 2-sulphoethyl methacrylate (SEMA) with/without ethylene glycol dimethacrylate (EDMA) within 100 microm id capillaries. In order to investigate the porous properties of the monoliths prepared in our laboratory, mercury intrusion porosimetry, SEM and micro-HPLC were used to measure the monolithic structures. The monolithic columns prepared without EDMA showed bad mechanical stability at high pressure, which is undesirable for micro-HPLC applications. However, it was observed that the small amount (5% w/w) of EDMA clearly improved the mechanical stability of the monoliths. In order to evaluate their application for micro-HPLC, a range of neutral, acidic and basic compounds was separated with these capillaries and satisfactory separations were obtained. In order to further investigate the separation mechanism of these monolithic columns, comparative studies were carried out on the poly(PEDAS-co-SEMA) monolithic column and two other monoliths, poly(PEDAS) and poly(PEDAS-co-2-(methacryloyloxy)ethyl-trimethylammonium methylsulphate (METAM)). As expected, different selectivities were observed for the separation of basic compounds on all three monolithic columns using the same separation conditions. The mobile phase pH also showed clear influence on the retention time of basic compounds. This could be explained by ion-exchange interaction between positively charged analytes and the negatively charged sulphate group.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel modified monolithic column with pH-responsive polymer chains was prepared by grafting methacrylic acid onto the poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith. The grafting polymerization was achieved in an in situ manner which was performed by pumping methacrylic acid directly through an acidic hydrolysis monolithic column using potassium peroxydisulfate initiated free-radical polymerization. The grafted monolithic column was demonstrated to be the pH-responsive to the pore structure and the chromatographic characterization. The permeability of the column and the retention factors of five benzene homologues decreased due to the conformational changes of the polymer chains when the pH of mobile phase increased from 4.5 to 7.5. Furthermore, the modified monolithic column was used as the pH-responsive stationary phase and exhibited an excellent separation of four basic proteins.
    Talanta 09/2009; 79(3):739-45. · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Highly cross-linked networks resulting from single crosslinking monomers were found to enhance the concentrations of mesopores in, and the surface areas of, polymeric monoliths. Four crosslinking monomers, i.e., bisphenol A dimethacrylate (BADMA), bisphenol A ethoxylate diacrylate (BAEDA, EO/phenol=2 or 4) and pentaerythritol diacrylate monostearate (PDAM), were used to synthesize monolithic capillary columns for reversed phase liquid chromatography (RPLC) of small molecules. Tetrahydrofuran (THF) and decanol were chosen as good and poor porogenic solvents for BAEDA-2 and BAEDA-4 monoliths. For the formation of the BADMA monolith, THF was replaced with dimethylformamide (DMF) to improve the column reproducibility. Appropriate combinations of THF, isopropyl alcohol and an additional triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) or PPO-PEO-PPO porogen were found to be effective in forming rigid PDAM monoliths with the desired porosities. Selection of porogens for the BADMA and PDAM monoliths was investigated in further detail to provide more insight into porogen selection. Isocratic elution of alkyl benzenes at a flow rate of 0.3 μL/min was conducted for BADMA and PDAM monoliths. The peaks showed little tailing on both monoliths without addition of acid to the mobile phase. The column efficiency measured for pentylbenzene using the BADMA monolithic column was 60,208 plates/m (k=7.9). Gradient elution of alkyl benzenes and alkyl parabens was achieved with high resolution. Optimized monoliths synthesized from all four crosslinking monomers showed high permeability, and demonstrated little swelling or shrinking in different polarity solvents. Column preparation was highly reproducible; relative standard deviation (RSD) values were less than 1.2% and 7.5% based on retention times and peak areas, respectively, of alkyl benzenes.
    Journal of Chromatography A 03/2011; 1218(10):1399-408. · 4.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 2,3,6-Tris(phenylcarbamoyl)-β-cyclodextrin-6-methacrylate was prepared and used as a functional monomer for the preparation of new β-cyclodextrin (β-CD) functionalized polymer monoliths. The polymer monoliths were prepared via the copolymerization of β-CD methacrylate and ethylene glycol dimethacrylate in different ratios in situ in fused silica capillary (internal diameter 150μm). The effect of functional monomer/cross linker concentration on the chiral separation of different classes of pharmaceuticals namely; α- and β-blockers, antiinflammatory drugs, antifungal drugs, dopamine antagonists, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, diuretics, antihistaminics, anticancer drugs and antiarrhythmic drugs was investigated. Baseline separation was achieved for propranolol, ifosfamide, alprenolol, tertalol, 1-indanol, tebuconazole, o-methoxymandelic acid, celiprolol and cizolertine under reversed phase conditions with mobile phase composed of methanol and water, using nano liquid chromatography. The method provides more economical analysis under environmentally benign conditions. The prepared capillary columns showed good mechanical stability and good repeatability (run-to run and batch-to batch).
    Journal of Chromatography A 04/2014; · 4.61 Impact Factor