Article

Sex-specific variability in the immune system across life-history stages.

Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
The American Naturalist (Impact Factor: 4.45). 10/2008; 172(3):E99-112. DOI: 10.1086/589521
Source: PubMed

ABSTRACT Organisms theoretically manage their immune systems optimally across their life spans to maximize fitness. However, we lack information on (1) how the immune system is managed across life-history stages, (2) whether the sexes manage immunity differentially, and (3) whether immunity is repeatable within an individual. We present a within-individual, repeated-measures experiment examining life-history stage variation in the inflammatory immune response in the zebra finch (Taeniopygia guttata). In juveniles, age-dependent variation in immune response differed in a sex- and context-specific manner, resulting in no repeatability across stages. In adults, females displayed little stage-dependent variation in immune response when laying while receiving a high-quality (HQ) diet; however, laying while receiving a low-quality (LQ) diet significantly reduced both immune responses and reproductive outputs in a manner consistent with a facultative (resource-driven) effect of reproduction on immunity. Moreover, a reduced immune response in females who were raising offspring while receiving an HQ diet suggests a residual effect of the energetic costs of reproduction. Conversely, adult males displayed no variation in immune responses across stages, with high repeatability from the nonbreeding stage to the egg-laying stage, regardless of diet quality (HQ diet, r = 0.51; LQ diet, r = 0.42). Females displayed high repeatability when laying while receiving the HQ diet (r = 0.53); however, repeatability disappeared when individuals received the LQ diet. High-response females receiving the HQ diet had greater immune flexibility than did low-response females who were laying while receiving the LQ diet. Data are consistent with immunity being a highly plastic trait that is sex-specifically modulated in a context-dependent manner and suggest that immunity at one stage may provide limited information about immunity at future stages.

0 Bookmarks
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of immunity has become an important area of investigation for researchers in a wide range of areas outside the traditional discipline of immunology. For the last several decades, psychoneuroimmunology (PNI) has strived to identify key interactions among the nervous, endocrine and immune systems and behavior. More recently, the field of ecological immunology (ecoimmunology) has been established within the perspectives of ecology and evolutionary biology, sharing with PNI an appreciation of the environmental influences on immune function. The primary goal of ecoimmunology is to understand immune function within a broadly integrative, organismal context, typically from an ultimate, evolutionary perspective. To accomplish this ecoimmunology, like PNI, has become a broadly integrative field of investigation, combining diverse approaches from evolution and ecology to endocrinology and neurobiology. The disciplines of PNI and ecoimmunology, with their unique yet complementary perspectives and methodologies, have much to offer one another. Researchers in both fields, however, remain largely unaware of each other’s findings despite attempts at integration. The goal of this review is to share with psychoneuroimmunologists and other mechanistically-oriented researchers some of the core concepts and principles, as well as relevant recent findings, within ecoimmunology with the hope that this information will prove relevant to their own research programs. More broadly, our goal is to attempt to integrate both the proximate and ultimate perspectives offered by PNI and ecoimmunology respectively into a common theoretical framework for understanding neuro-endocrine-immune interactions and behavior in a larger ecological, evolutionary context.
    Brain Behavior and Immunity 09/2014; · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In natural populations, epidemics provide opportunities to look for intense natural selection on genes coding for life history and immune or other physiological traits. If the populations being considered are of management or conservation concern, then identifying the traits under selection (or ‘markers’) might provide insights into possible intervention strategies during epidemics. We assessed potential for selection on multiple immune and life history traits of Arctic breeding common eiders (Somateria mollissima) during annual avian cholera outbreaks (summers of 2006, 2007 & 2008). We measured prelaying body condition, immune traits, and subsequent reproductive investment (i.e., clutch size) and survival of female common eiders and whether they were infected with Pasteurella multocida, the causative agent of avian cholera. We found no clear and consistent evidence of directional selection on immune traits; however, infected birds had higher levels of haptoglobin than uninfected birds. Also, females that laid larger clutches had slightly lower immune responses during the prelaying period reflecting possible downregulation of the immune system to support higher costs of reproduction. This supports a recent study indicating that birds investing in larger clutches were more likely to die from avian cholera and points to a possible management option to maximize female survival during outbreaks.
    Evolutionary Applications 06/2014; · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Measures of body condition, immune function, and hematological health are widely used in ecological studies of vertebrate populations, predicated on the assumption that these traits are linked to fitness. However, compelling evidence that these traits actually predict long-term survival and reproductive success among individuals in the wild is lacking. Here, we show that body condition (i.e., size-adjusted body mass) and cutaneous immune responsiveness to phytohaemagglutinin (PHA) injection among neonates positively predict recruitment and subsequent longevity in a wild, migratory population of house wrens (Troglodytes aedon). However, neonates with intermediate hematocrit had the highest recruitment and longevity. Neonates with the highest PHA responsiveness and intermediate hematocrit prior to independence eventually produced the most offspring during their lifetime breeding on the study site. Importantly, the effects of PHA responsiveness and hematocrit were revealed while controlling for variation in body condition, sex, and environmental variation. Thus, our data demonstrate that body condition, cutaneous immune responsiveness, and hematocrit as a neonate are associated with individual fitness. Although hematocrit's effect is more complex than traditionally thought, our results suggest a previously underappreciated role for this trait in influencing survival in the wild.
    Ecology 11/2014; 95(11):3027-3034. · 5.00 Impact Factor

Full-text (2 Sources)

Download
43 Downloads
Available from
May 26, 2014