Article

A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits

Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, JT Inc., Takatsuki, Osaka, Japan.
Nature (Impact Factor: 42.35). 01/2000; DOI: 10.1038/35018119

ABSTRACT Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates the exchange of cholesteryl ester in high-density lipoprotein (HDL) for triglyceride in very low density lipoprotein (VLDL). This process decreases the level of anti-atherogenic HDL cholesterol and increases pro-atherogenic VLDL and low density lipoprotein (LDL) cholesterol, so CETP is potentially atherogenic. On the other hand, CETP could also be anti-atherogenic, because it participates in reverse cholesterol transport (transfer of cholesterol from peripheral cells through the plasma to the liver). Because the role of CETP in atherosclerosis remains unclear, we have attempted to develop a potent and specific CETP inhibitor. Here we describe CETP inhibitors that form a disulphide bond with CETP, and present one such inhibitor (JTT-705) that increases HDL cholesterol, decreases non-HDL cholesterol and inhibits the progression of atherosclerosis in rabbits. Our findings indicate that CETP may be atherogenic in vivo and that JTT-705 may be a potential anti-atherogenic drug.

0 Followers
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiologic studies have shown that low-density lipoprotein cholesterol (LDL-C) is a strong risk factor, whilst high-density lipoprotein cholesterol (HDL-C) reduces the risk of coronary heart disease (CHD). Therefore, strategies to manage dyslipidemia in an effort to prevent or treat CHD have primarily attempted at decreasing LDL-C and raising HDL-C levels. Cholesteryl ester transfer protein (CETP) mediates the exchange of cholesteryl ester for triglycerides between HDL and VLDL and LDL. We have published the first report indicating that a group of Japanese patients who were lacking CETP had extremely high HDL-C levels, low LDL-C levels and a low incidence of CHD. Animal studies, as well as clinical and epidemiologic evidences, have suggested that inhibition of CETP provides an effective strategy to raise HDL-C and reduce LDL-C levels. Four CETP inhibitors have substantially increased HDL-C levels in dyslipidemic patients. This review will discuss the current status and future prospects of CETP inhibitors in the treatment of CHD. At present anacetrapib by Merck and evacetrapib by Eli Lilly are under development. By 100 mg of anacetrapib HDL-C increased by 138%, and LDL-C decreased by 40%. Evacetrapib 500 mg also showed dramatic 132% increase of HDL-C, while LDL-C decreased by 40%. If larger, long-term, randomized, clinical end point trials could corroborate other findings in reducing atherosclerosis, CETP inhibitors could have a significant impact in the management of dyslipidemic CHD patients. Inhibition of CETP synthesis by antisense oligonucleotide or small molecules will produce more similar conditions to human CETP deficiency and may be effective in reducing atherosclerosis and cardiovascular events. We are expecting the final data of prospective clinical trials by CETP inhibitors in 2015.
  • Arteriosclerosis Thrombosis and Vascular Biology 01/2003; 23(2):160-167. DOI:10.1161/01.ATV.0000054658.91146.64 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. HDL Metabolism and Atheroprotection: Predictive Value of Lipid Transfers 2. Diagnosis of Infection in Critical Care 3. Metabolomics in Nephrotoxicity 4. Metabolic Syndrome in Pediatrics 5. CSF in Alzheimer's Disease 6. Food Allergy Testing 7. Matrix Metalloproteinases in Biologic Samples
    Advances in clinical chemistry 01/2014; 65:1-297. · 4.30 Impact Factor