MicroRNAs in neurodegeneration.

Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore.
Current Opinion in Neurobiology (Impact Factor: 6.77). 09/2008; 18(3):292-6. DOI: 10.1016/j.conb.2008.07.001
Source: PubMed

ABSTRACT microRNAs (miRNAs) act as post-transcriptional regulators of gene expression in diverse cellular and developmental processes. Many miRNAs are expressed specifically in the central nervous system, where they have roles in differentiation, neuronal survival, and potentially also in plasticity and learning. The absence of miRNAs in a variety of specific postmitotic neurons can lead to progressive loss of these neurons and behavioral defects reminiscent of the phenotypes seen in the pathologies of neurodegenerative diseases. Here, we review recent studies which provide a link between miRNA function and neurodegeneration. We also discuss evidence which might suggest involvement of miRNAs in the emergence or progression of neurodegenerative diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegenerative diseases are characterized by the loss of specific neuronal populations. Epidemiological studies and pathologycal analyses have demonstrated the existence of a link between mutations in specific genes and heritable forms of neurodegenerative diseases. Although some of these mutations can be found in higher frequency among certain ethnic populations, together they account for only a small percentage of all cases. Therefore, at the present it is well accepted that the causes of idiopathic or non-familial forms of neurodegenerative diseases are multifactorial, including genetic predisposition, epigenetic factors, age, and even environmental factors. Although the key molecular and cellular events underlying the development of neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's and multiple sclerosis, are clearly different, a common feature between them is neuroinflammation. In this context, the central nervous system has long been considered to be an immuneprivileged site because of the presence of the blood–brain barrier and the lack of a lymphatic system, still it is now well established that it is fully capable of mounting an inflammatory response. Invading pathogens, trauma, stroke, intraneural as well as extracellular fibrillary material can trigger local invasion of circulating immune cells, production of reactive oxygen and nitrogen species, as well as the activation of the brain resident macrophages known as microglia. Inflammation in the central nervous system has been appropriately described as a two-edged sword; in acute situations inflammatory mechanisms limit injury and promotes healing; however, in a chronic situation neuroinflammation can seriously damage viable host tissue. Current studies support the notion that neuroinflammation promotes or facilitates neurodegeneration; therefore, early intervention with antiinflammatory therapies in populations identified to be at risk due to genetic mutations may represent a valuable tool. We present recent data regarding non-genetic mechanisms that regulate the development of neurological disorders including Huntington’s disease, multiple sclerosis, Parkinson’s disease and Alzheimer’s disease.
    Molecular Aspects of Inflammation, 11/2013: chapter Neurodegenerative disorders and inflammation: pages 173-207; Research Signpost., ISBN: 978-81-308-0528-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs shape the identity and function of cells by regulating gene expression. It is known that brain-specific miR-9 is controlled transcriptionally; however, it is unknown whether post-transcriptional processes contribute to establishing its levels. Here we show that miR-9 is regulated transcriptionally and post-transcriptionally during neuronal differentiation of the embryonic carcinoma cell line P19. We demonstrate that miR-9 is more efficiently processed in differentiated than in undifferentiated cells. We reveal that Lin28a affects miR-9 by inducing the degradation of its precursor through a uridylation-independent mechanism. Furthermore, we show that constitutively expressed untagged but not GFP-tagged Lin28a decreases differentiation capacity of P19 cells, which coincides with reduced miR-9 levels. Finally, using an inducible system we demonstrate that Lin28a can also reduce miR-9 levels in differentiated P19 cells. Together, our results shed light on the role of Lin28a in neuronal differentiation and increase our understanding of the mechanisms regulating the level of brain-specific microRNAs.
    Nature Communications 04/2014; 5:3687. DOI:10.1038/ncomms4687 · 10.74 Impact Factor
  • Source