Metal−Metal Quintuple and Sextuple Bonding in Bent Dimetallocenes of the Third Row Transition Metals

Journal of Chemical Theory and Computation (Impact Factor: 5.5). 02/2010; 6(3). DOI: 10.1021/ct900564p


Theoretical studies on the dimetallocenes Cp2M2 (M = Os, Re, W, Ta) predict bent structures with short metal−metal distances suggesting high-order metal−metal multiple bonds. Analysis of the frontier bonding molecular orbitals indicates a formal Os−Os quintuple bond (σ + 2π + 2δ) in singlet Cp2Os2 and a formal Re−Re sextuple bond (2σ + 2π + 2δ) in singlet Cp2Re2, thereby giving the metals in both molecules the favored 18-electron metal configurations. Predicted low-energy triplet structures for Cp2M2 (M = Os, Re) have formal quintuple bonds but with only two δ one-electron “half” bonds (M = Os) or a single δ two-electron bond (M = Re) and a second σ component derived from overlap of the d(z2) orbitals. A quintuple bond similar to that found in triplet Cp2Re2 is found in singlet Cp2W2, giving both tungsten atoms a 16-electron configuration. The formal Ta−Ta quadruple bond in the lowest energy singlet Cp2Ta2 structure is different from that in the original Re2Cl82− in that it is a 2σ + 2π bond with no δ components but only σ and π components.

15 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complexes of the form An(2)(C(8)H(8))(2) (An = Th, Pa, U, and Np) were investigated using density functional theory with scalar-relativistic effective core potentials. For uranium, a coaxial isomer with D(8h) symmetry is found to be more stable than a C(s) isomer in which the dimetal unit is perpendicular to the C(8) ring axis. Similar coaxial structures are predicted for Pa(2)(C(8)H(8))(2) and Np(2)(C(8)H(8))(2), while in Th(2)(C(8)H(8))(2), the C(8)H(8) rings tilt away from the An-An axis. Going from Th(2)(C(8)H(8))(2) to Np(2)(C(8)H(8))(2), the An-An bond length decreases from 2.81 A to 2.19 A and the An-An stretching frequency increases from 249 to 354 cm(-1). This is a result of electrons populating An-An 5f pi- and delta-type bonding orbitals and varphi nonbonding orbitals, thereby increasing in An-An bond order. U(2)(C(8)H(8))(2) is stable with respect to dissociation into U(C(8)H(8)) monomers. Disproportionation of U(2)(C(8)H(8))(2) into uranocene and the U atom is endothermic but is slightly exothermic for uranocene plus (1)/(2)U(2), suggesting that it might be possible to prepare double stuffed uranocene if suitable conditions can be found to avoid disproportionation.
    Inorganic Chemistry 07/2010; 49(14):6545-51. DOI:10.1021/ic100427t · 4.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13−15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the “molecular electronegativity”, which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 21/2 bonds, in accord with recent experimental evidence based on solid state 29Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules “less bonds pay more”. (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent−ionic mixing. This quantity is shown to correlate linearly with the corresponding “molecular electronegativity” and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.
    Journal of Chemical Theory and Computation 03/2011; 7(4). DOI:10.1021/ct100741b · 5.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: White phosphorus, yellow arsenic, and AsP3 have been successfully activated by a complex with a Cr-Cr quintuple bond in one step leading to the formation of rare terminally bound cyclo-P42-, cyclo-As42-, and cyclo-AsP3 units. The subsequent reaction with an excess of [W(CO)5(thf)] leads to the coordination of one {W(CO)5} fragment in the thermodynamically most stable form according to DFT calculations.
    Angewandte Chemie International Edition 08/2011; 50(32):7283-6. DOI:10.1002/anie.201102361 · 11.26 Impact Factor
Show more